Stationary Pattern and Global Bifurcation for a Predator-Prey Model with Prey-Taxis and General Class of Functional Responses

被引:0
作者
Maimaiti, Yimamu [1 ]
Zhang, Wang [2 ]
Muhammadhaji, Ahmadjan [1 ,3 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830017, Peoples R China
[2] Shaanxi Normal Univ, Sch Math & Stat, Xian 710119, Peoples R China
[3] Xinjiang Univ, Key Lab Appl Math Xinjiang Uygur Autonomous Reg, Urumqi 830017, Peoples R China
关键词
prey-taxis; nonlocal competition; numerical simulation; bifurcation; pattern formation; STEADY-STATES; SYSTEM; STABILITY; COMPETITION; DYNAMICS;
D O I
10.3390/math11224641
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper will explore a predator-prey model that incorporates prey-taxis and a general functional response in a bounded domain. Firstly, we will examine the stability and pattern formation of both local and nonlocal models. Our main finding is that the inclusion of nonlocal terms enhances linear stability, and the system can generate patterns due to the effects of prey-taxis. Secondly, we consider the nonlinear prey-taxis as the bifurcation parameter in order to analyze the global bifurcation of this model. Specifically, we identify a branch of nonconstant solutions that emerges from the positive constant solution when the prey-tactic sensitivity is repulsive. Finally, we will validate the effectiveness of the theoretical conclusions using numerical simulation methods.
引用
收藏
页数:21
相关论文
共 28 条
[1]  
Agarwal M.J., 2012, Int. J. Math. Soft Comput, V2, P83, DOI [10.26708/IJMSC.2012.1.2.12, DOI 10.26708/IJMSC.2012.1.2.12]
[2]   A reaction-diffusion system modeling predator-prey with prey-taxis [J].
Ainseba, Bedr'Eddine ;
Bendahmane, Mostafa ;
Noussair, Ahmed .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (05) :2086-2105
[3]   A strongly coupled predator-prey system with non-monotonic functional response [J].
Chen, Xinfu ;
Qi, Yuanwei ;
Wang, Mingxin .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (06) :1966-1979
[4]  
Crandall MG, 1971, J FUNCT ANAL, V8, P321, DOI [10.1016/0022-1236(71)90015-2, DOI 10.1016/0022-1236(71)90015-2]
[5]   A diffusive predator-prey model with a protection zone [J].
Du, Yihong ;
Shi, Junping .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 229 (01) :63-91
[6]   Steady states of models of microbial growth and competition with chemotaxis [J].
Dung, L ;
Smith, HL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 229 (01) :295-318
[7]   LOCAL VS NON-LOCAL INTERACTIONS IN POPULATION-DYNAMICS [J].
FURTER, J ;
GRINFELD, M .
JOURNAL OF MATHEMATICAL BIOLOGY, 1989, 27 (01) :65-80
[8]  
Huang Jicai, 2004, [Acta Mathematicae Applicatae Sinica, Ying yung shu hseh hseh pao], V20, P167
[9]   Spatial heterogeneity of resources versus Lotka-Volterra dynamics [J].
Hutson, V ;
Lou, Y ;
Mischaikow, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 185 (01) :97-136
[10]   The Coexistence States of a Predator-Prey Model with Nonmonotonic Functional Response and Diffusion [J].
Jia, Yunfeng ;
Wu, Jianhua ;
Nie, Hua .
ACTA APPLICANDAE MATHEMATICAE, 2009, 108 (02) :413-428