Mapping local atomic structure of metallic glasses using machine learning aided 4D-STEM

被引:4
作者
Kang, Sangjun [1 ,2 ]
Wollersen, Vanessa [1 ]
Minnert, Christian [3 ]
Durst, Karsten [3 ]
Kim, Hyoung-Seop [4 ,5 ,6 ]
Kuebel, Christian [1 ,2 ,7 ]
Mu, Xiaoke [1 ,8 ,9 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Nanotechnol INT, D-76344 Eggenstein Leopoldshafen, Germany
[2] Tech Univ Darmstadt TUDa, Joint Res Lab Nanomat, Darmstadt, Germany
[3] Tech Univ Darmstadt TUDa, Dept Mat Sci, Phys Met, D-64287 Darmstadt, Germany
[4] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 37673, South Korea
[5] Tohoku Univ, Adv Inst Mat Res WPI AIMR, Sendai 9808577, Japan
[6] Yonsei Univ, Inst Convergence Res & Educ Adv Technol, Seoul 03722, South Korea
[7] Karlsruhe Inst Technol KIT, Karlsruhe Nano Micro Facil KNMFi, D-76344 Eggenstein Leopoldshafen, Germany
[8] Lanzhou Univ, Sch Mat & Energy, Lanzhou 730000, Peoples R China
[9] Lanzhou Univ, Electron Microscopy Ctr, Lanzhou 730000, Peoples R China
关键词
Four dimensional -scanning transmission elec; tron microscopy (4D-STEM); Pair distribution function (PDF); Nonnegative matrix factorization (NMF); Metallic glasses; FLUCTUATION ELECTRON-MICROSCOPY; PAIR DISTRIBUTION FUNCTION; MEDIUM-RANGE ORDER; MECHANICAL-BEHAVIOR; DIFFRACTION; CRYSTALLINE; RELAXATION; THICKNESS; PACKING; PROBE;
D O I
10.1016/j.actamat.2023.119495
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Amorphous materials such as polymers, metallic and oxidic glasses consist of heterogeneous atomic/molecular packing at the nanoscale. Spatial variation of the local structure plays an important role in determining material properties. Experimentally probing the local atomic structure within the amorphous phase has been one of the main challenges for material research. Here, we present a new approach to characterize the local atomic structure and map structural variants in the amorphous phase using machine learning (ML) aided four dimensional-scanning transmission electron microscopy (4D-STEM). We utilized nonnegative matrix factorization (NMF) to identify the local structural types of metallic glasses in 4D-STEM datasets. Using Fe-based metallic glasses as a model system, we demonstrate that two basic structural types, one with a more liquid-like and another with a more solid-like structure, are distributed throughout the glass with a characteristic length scale of a few nanometers. Thermal annealing induces a change in their distribution and relative population but without the appearance of any additional phase. This provides new insights into the relaxation phenomena of metallic glasses and solid experimental evidence for the theoretical hypothesis on atomic packing in glassy structures.
引用
收藏
页数:7
相关论文
共 68 条
  • [21] Variable Resolution Fluctuation Electron Microscopy on Cu-Zr Metallic Glass Using a Wide Range of Coherent STEM Probe Size
    Hwang, Jinwoo
    Voyles, P. M.
    [J]. MICROSCOPY AND MICROANALYSIS, 2011, 17 (01) : 67 - 74
  • [22] Direct determination of structural heterogeneity in metallic glasses using four-dimensional scanning transmission electron microscopy
    Im, Soohyun
    Chen, Zhen
    Johnson, Jared M.
    Zhao, Pengyang
    Yoo, Geun Hee
    Park, Eun Soo
    Wang, Yunzhi
    Muller, David A.
    Hwang, Jinwoo
    [J]. ULTRAMICROSCOPY, 2018, 195 : 189 - 193
  • [23] Principal component analysis: a review and recent developments
    Jolliffe, Ian T.
    Cadima, Jorge
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 374 (2065):
  • [24] Direct Observation of Quadrupolar Strain Fields forming a Shear Band in Metallic Glasses
    Kang, Sangjun
    Wang, Di
    Caron, Arnaud
    Minnert, Christian
    Durst, Karsten
    Kuebel, Christian
    Mu, Xiaoke
    [J]. ADVANCED MATERIALS, 2023, 35 (25)
  • [25] Nanoscale light element identification using machine learning aided STEM-EDS
    Kim, Hong-Kyu
    Ha, Heon-Young
    Bae, Jee-Hwan
    Cho, Min Kyung
    Kim, Juyoung
    Han, Jeongwoo
    Suh, Jin-Yoo
    Kim, Gyeung-Ho
    Lee, Tae-Ho
    Jang, Jae Hoon
    Chun, Dongwon
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [26] Kirkland E.J., 1998, ADV COMPUTING ELECT, V12
  • [27] NEUTRON AND X-RAY-DIFFRACTION STUDY OF THE TI84SI16 METALLIC-GLASS
    LAMPARTER, P
    HABENSCHUSS, A
    NARTEN, AH
    [J]. JOURNAL OF NON-CRYSTALLINE SOLIDS, 1986, 86 (1-2) : 109 - 120
  • [28] A predictive structural model for bulk metallic glasses
    Laws, K. J.
    Miracle, D. B.
    Ferry, M.
    [J]. NATURE COMMUNICATIONS, 2015, 6
  • [29] Learning the parts of objects by non-negative matrix factorization
    Lee, DD
    Seung, HS
    [J]. NATURE, 1999, 401 (6755) : 788 - 791
  • [30] Forming of metallic glasses: mechanisms and processes
    Li, Z.
    Huang, Z.
    Sun, F.
    Li, X.
    Ma, J.
    [J]. MATERIALS TODAY ADVANCES, 2020, 7