Radar-based Recognition of Activities of Daily Living in the Palliative Care Context Using Deep Learning

被引:3
|
作者
Braeunig, Johanna [1 ]
Mejdani, Desar [1 ]
Krauss, Daniel [2 ]
Griesshammer, Stefan [3 ]
Richer, Robert [2 ]
Schuessler, Christian
Yip, Julia [3 ]
Steigleder, Tobias [3 ]
Ostgathe, Christoph [1 ,3 ]
Eskofier, Bjoern M. [2 ]
Vossiek, Martin [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg FAU, Inst Microwaves & Photon, Dept Elect Engn, D-91058 Erlangen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Machine Learning & Data Analyt Lab MaD Lab, Dept Artificial Intelligence Biomed Engn AIBE, D-91052 Erlangen, Germany
[3] Univ Klinikum Erlangen, Dept Palliat Med, D-91054 Erlangen, Germany
来源
2023 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS, BHI | 2023年
关键词
activities of daily living; radar; deep learning; human activity recognition; palliative care;
D O I
10.1109/BHI58575.2023.10313506
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The accurate detection and quantification of activities of daily life (ADL) are crucial for assessing the health status of palliative patients to allow an optimized treatment in the last phase of life. Current evaluation methods heavily rely on subjective self-reports or external observations by clinical staff, lacking objectivity. To address this limitation, we propose a radar-based approach for recognizing ADLs in a palliative care context. In our proof of concept study, we recorded five different ADLs relevant to palliative care, all occurring within a hospital bed, from N=14 healthy participants (57% women, aged 28.6 +/- 5.3 years). All movements were recorded using two frequency-modulated continuous wave radar systems measuring velocity, range, and angle. A convolutional neural network combined with long shortterm memory achieved a classification accuracy of 99.8 +/- 0.4% across five cross-validation folds. Furthermore, we compare our initial approach, which takes into account all dimensions of the available radar data, to a simplified version, where only velocity information over time is fed into the network. While these results demonstrate the high potential of radar-based sensing to automatically detect and quantify activities in a palliative care context, future work is still necessary to assess the applicability to real-world hospital scenarios.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Lightweight Deep Learning Model for Radar-Based Fall Detection With Metric Learning
    Ou, Zixuan
    Ye, Wenbin
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (09) : 8111 - 8122
  • [22] Radar-Based Face Recognition: One-Shot Learning Approach
    Ha-Anh Pho
    Lee, Seongwook
    Vo-Nguyen Tuyet-Doan
    Kim, Yong-Hwa
    IEEE SENSORS JOURNAL, 2021, 21 (05) : 6335 - 6341
  • [23] Recognition of Radar-Based Deaf Sign Language Using Convolution Neural Network
    Malik, M. D. H. Dol
    Mansor, W.
    Rashid, N. E. Abdul
    Rahman, M. Z. U.
    INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING, 2023, 15 (03): : 124 - 130
  • [24] Learning on Multistatic Simulation Data for Radar-Based Automotive Gesture Recognition
    Kern, Nicolai
    Aguilar, Julian
    Grebner, Timo
    Meinecke, Benedikt
    Waldschmidt, Christian
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2022, 70 (11) : 5039 - 5050
  • [25] Elderly care: activities of daily living classification with an S band radar
    Shrestha, Aman
    Le Kernec, Julien
    Fioranelli, Francesco
    Lin, Yier
    He, Qian
    Lorandel, Jordane
    Romain, Olivier
    JOURNAL OF ENGINEERING-JOE, 2019, 2019 (21): : 7601 - 7606
  • [26] Radar-Based Human Activity Recognition Using Multidomain Multilevel Fused Patch-Based Learning
    Dey, Ankita
    Rajan, Sreeraman
    Xiao, Gaozhi
    Lu, Jianping
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 14
  • [27] Recognition of sports and daily activities through deep learning and convolutional block attention
    Mekruksavanich S.
    Phaphan W.
    Hnoohom N.
    Jitpattanakul A.
    PeerJ Computer Science, 2024, 10
  • [28] Recognition of sports and daily activities through deep learning and convolutional block attention
    Mekruksavanich, Sakorn
    Phaphan, Wikanda
    Hnoohom, Narit
    Jitpattanakul, Anuchit
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [29] Radar-Based Human Gait Recognition Using Dual-Channel Deep Convolutional Neural Network
    Bai, Xueru
    Hui, Ye
    Wang, Li
    Zhou, Feng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (12): : 9767 - 9778
  • [30] Deep Learning Models for Daily Living Activity Recognition based on Wearable Inertial Sensors
    Mekruksavanich, Sakorn
    Jantawong, Ponnipa
    Hnoohom, Narit
    Jitpattanakul, Anuchit
    2022 19TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER SCIENCE AND SOFTWARE ENGINEERING (JCSSE 2022), 2022,