Lyapunov Functions for Linear Hyperbolic Systems

被引:1
作者
Atamas, Ivan [1 ]
Dashkovskiy, Sergey [1 ]
Slynko, Vitalii [1 ]
机构
[1] Julius Maximilians Univ Wurzburg, D-97074 Wurzburg, Germany
关键词
Coupled systems; exponential L-2-stability; linear nonstrictly hyperbolic systems; Lyapunov function; BOUNDARY FEEDBACK STABILIZATION; EXPONENTIAL STABILITY; EQUATIONS;
D O I
10.1109/TAC.2023.3247879
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we develop new methods to construct a Lyapunov function for 1-D linear hyperbolic equations with variable coefficients. The main focus is on the nonstrictly hyperbolic case for which we give an example demonstrating that existing approaches cannot provide sufficient conditions for the asymptotic stability, but our approach does. Sufficient conditions for exponential L-2-stability for a connected 2 x 2 system of linear 1-D hyperbolic systems are obtained. By means of examples, we compare the capabilities of our approach with the existing ones.
引用
收藏
页码:6496 / 6508
页数:13
相关论文
共 26 条
  • [1] An explicit mapping from linear first order hyperbolic PDEs to difference systems
    Auriol, Jean
    Di Meglio, Florent
    [J]. SYSTEMS & CONTROL LETTERS, 2019, 123 : 144 - 150
  • [2] Bastin G, 2016, PROG NONLINEAR DIFFE, V88, P1, DOI 10.1007/978-3-319-32062-5
  • [3] Input-to-State Stability in sup norms for hyperbolic systems with boundary disturbances
    Bastin, Georges
    Coron, Jean-Michel
    Hayat, Amaury
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 208
  • [4] On boundary feedback stabilization of non-uniform linear 2 x 2 hyperbolic systems over a bounded interval
    Bastin, Georges
    Coron, Jean-Michel
    [J]. SYSTEMS & CONTROL LETTERS, 2011, 60 (11) : 900 - 906
  • [5] Stability Analysis for a Class of Linear 2 x 2 Hyperbolic PDEs Using a Backstepping Transform
    Bou Saba, David
    Bribiesca-Argomedo, Federico
    Auriol, Jean
    Di Loreto, Michael
    Di Meglio, Florent
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (07) : 2941 - 2956
  • [6] Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems
    Coron, Jean-Michel
    Bastin, Georges
    d'Andrea-Novel, Brigitte
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2008, 47 (03) : 1460 - 1498
  • [7] PI Controllers for 1-D Nonlinear Transport Equation
    Coron, Jean-Michel
    Hayat, Amaury
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (11) : 4570 - 4582
  • [8] LOCAL EXPONENTIAL H2 STABILIZATION OF A 2 x 2 QUASILINEAR HYPERBOLIC SYSTEM USING BACKSTEPPING
    Coron, Jean-Michel
    Vazquez, Rafael
    Krstic, Miroslav
    Bastin, Georges
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2013, 51 (03) : 2005 - 2035
  • [9] Demidovi BP., 1967, Lectures on the Mathematical Theory of Stability
  • [10] Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws
    Diagne, Ababacar
    Bastin, Georges
    Coron, Jean-Michel
    [J]. AUTOMATICA, 2012, 48 (01) : 109 - 114