Integrated Transcriptomic and Metabolomic Analysis Reveal the Underlying Mechanism of Anthocyanin Biosynthesis in Toona sinensis Leaves

被引:5
|
作者
Xu, Jing [1 ,2 ]
Fan, Yanru [1 ,2 ]
Han, Xiaojiao [1 ,2 ]
Pan, Huanhuan [1 ,2 ]
Dai, Jianhua [1 ,2 ]
Wei, Yi [1 ,2 ]
Zhuo, Renying [1 ,2 ]
Liu, Jun [1 ,2 ]
机构
[1] Chinese Acad Forestry, State Key Lab Tree Genet & Breeding, Beijing 100091, Peoples R China
[2] Chinese Acad Forestry, Res Inst Subtrop Forestry, Key Lab Tree Breeding Zhejiang Prov, Hangzhou 311400, Peoples R China
关键词
Toona sinensis; transcriptome; metabolome; anthocyanin; transcription factor; plant hormones; PROANTHOCYANIDIN BIOSYNTHESIS; FLAVONOID BIOSYNTHESIS; CHINESE TOON; EXPRESSION; BIOCHEMISTRY; COMPLEXES; GRAPEVINE; PROTEINS; GENETICS; PATHWAY;
D O I
10.3390/ijms242015459
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Toona sinensis, commonly known as Chinese Toon, is a plant species that possesses noteworthy value as a tree and vegetable. Its tender young buds exhibit a diverse range of colors, primarily determined by the presence and composition of anthocyanins and flavonoids. However, the underlying mechanisms of anthocyanin biosynthesis in Toona sinensis have been rarely reported. To explore the related genes and metabolites associated with composition of leaf color, we conducted an analysis of the transcriptome and metabolome of five distinct Toona clones. The results showed that differentially expressed genes and metabolites involved in anthocyanin biosynthesis pathway were mainly enriched. A conjoint analysis of transcripts and metabolites was carried out in JFC (red) and LFC (green), resulting in the identification of 510 genes and 23 anthocyanin-related metabolites with a positive correlation coefficient greater than 0.8. Among these genes and metabolites, 23 transcription factors and phytohormone-related genes showed strong coefficients with 13 anthocyanin derivates, which mainly belonged to the stable types of delphinidin, cyanidin, peonidin. The core derivative was found to be Cyanidin-3-O-arabinoside, which was present in JFC at 520.93 times the abundance compared to LFC. Additionally, the regulatory network and relative expression levels of genes revealed that the structural genes DFR, ANS, and UFGT1 might be directly or indirectly regulated by the transcription factors SOC1 (MADS-box), CPC (MYB), and bHLH162 (bHLH) to control the accumulation of anthocyanin. The expression of these genes was significantly higher in red clones compared to green clones. Furthermore, RNA-seq results accurately reflected the true expression levels of genes. Overall, this study provides a foundation for future research aimed at manipulating anthocyanin biosynthesis to improve plant coloration or to derive human health benefits.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Integrated analysis of the metabolome and transcriptome provides insights into anthocyanin biosynthesis of cashew apple
    Huang, Haijie
    Zhao, Li
    Zhang, Bei
    Huang, Weijian
    Zhang, Zhongrun
    An, Bang
    FOOD RESEARCH INTERNATIONAL, 2024, 175
  • [32] Novel Insights into Anthocyanin Synthesis in the Calyx of Roselle Using Integrated Transcriptomic and Metabolomic Analyses
    Li, Jing
    Li, Yunqing
    Li, Mei
    Lin, Lihui
    Qi, Jianmin
    Xu, Jiantang
    Zhang, Liwu
    Fang, Pingping
    Tao, Aifen
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (22)
  • [33] Integrated transcriptomic and metabolomic analyses reveal transcriptional regulatory network for phenolic acid biosynthesis in potato tubers
    Wang, Weilu
    Liu, Zhen
    Qi, Zheying
    Li, Zhitao
    Zhu, Jinyong
    Chen, Limin
    Li, Yuanming
    Bi, Zhenzhen
    Yao, Panfeng
    Sun, Chao
    Liu, Yuhui
    FOOD BIOSCIENCE, 2024, 62
  • [34] Integrated metabolomic and transcriptomic analysis of flavonoid biosynthesis in Ricinus communis L.
    Li, Hua
    Xu, Congping
    Zhou, Shen
    Huang, Sishu
    Wu, Zichen
    Jiangfang, Yiding
    Liu, Xianqing
    Zhan, Chuansong
    Luo, Jie
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 222
  • [35] Integrated transcriptomic and metabolomic analyses reveal regulation of terpene biosynthesis in the stems of Sindora glabra
    Yu, Niu
    Chen, Zhaoli
    Yang, Jinchang
    Li, Rongsheng
    Zou, Wentao
    TREE PHYSIOLOGY, 2021, 41 (06) : 1087 - 1102
  • [36] Integrated transcriptome and metabolome analysis reveals the anthocyanin biosynthesis mechanisms in blueberry (Vaccinium corymbosum L.) leaves under different light qualities
    Zhang, Jiaying
    Li, Shuigen
    An, Haishan
    Zhang, Xueying
    Zhou, Boqiang
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [37] Integrated metabolomic and transcriptomic analysis of the anthocyanin regulatory networks in Salvia miltiorrhiza Bge. flowers
    Tao Jiang
    Meidi Zhang
    Chunxiu Wen
    Xiaoliang Xie
    Wei Tian
    Saiqun Wen
    Ruike Lu
    Lingdi Liu
    BMC Plant Biology, 20
  • [38] Integrative Transcriptomic and Metabolomic Analyses of the Mechanism of Anthocyanin Accumulation and Fruit Coloring in Three Blueberry Varieties of Different Colors
    Chu, Liwei
    Du, Qianhui
    Li, Aizhen
    Liu, Guiting
    Wang, Hexin
    Cui, Qingqing
    Liu, Zhichao
    Liu, Haixia
    Lu, Yani
    Deng, Yanqiong
    Xu, Guohui
    HORTICULTURAE, 2024, 10 (01)
  • [39] Integrated Transcriptomic and Metabolomic Analysis Reveals the Molecular Regulatory Mechanism of Flavonoid Biosynthesis in Maize Roots under Lead Stress
    Guo, Zhaolai
    Yuan, Xinqi
    Li, Ting
    Wang, Sichen
    Yu, Yadong
    Liu, Chang'e
    Duan, Changqun
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (11)
  • [40] Sequencing and analysis of the complete mitochondrial genomes of Toona sinensis and Toona ciliata reveal evolutionary features of Toona
    Li, Youli
    Gu, Min
    Liu, Xuanzhe
    Lin, Jianna
    Jiang, Huier
    Song, Huiyun
    Xiao, Xingcui
    Zhou, Wei
    BMC GENOMICS, 2023, 24 (01)