CO2 Dissociation in Barrier Corona Discharges: Effect of Elevated Pressures in CO2/Ar Mixtures

被引:3
|
作者
Mahdikia, Hamed [1 ]
Brueser, Volker [1 ]
Schiorlin, Milko [1 ]
Brandenburg, Ronny [1 ,2 ]
机构
[1] Leibniz Inst Plasma Sci & Technol, Felix Hausdorff Str 2, D-17489 Greifswald, Germany
[2] Univ Rostock, Inst Phys, Albert Einstein Str 23-24, D-18059 Rostock, Germany
关键词
Barrier corona discharge; CO2; splitting; Non-thermal plasma; High-pressure plasma; Partial discharging; CARBON-DIOXIDE; HYDROGEN-PRODUCTION; PARTIAL OXIDATION; PLASMA; METHANE; CONVERSION; REDUCTION; OXYGEN; STEAM; ARGON;
D O I
10.1007/s11090-023-10411-1
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The formation of carbon monoxide, oxygen and ozone in a barrier corona discharge (BCD) operating in pure carbon dioxide (CO2) and binary mixtures of CO2 and argon is studied. The asymmetric electrode configuration of the BCDs allows plasma operation at pressures exceeding 1 atm, up to 6 bar, at moderate high-voltage amplitudes below 15 kV. Charge-voltage plots and an equivalent circuit model are employed to characterize the electrical parameters at different pressures and gas compositions. Depending on these conditions and the voltage amplitude, full or partial coverage of the electrodes with plasma is obtained. The existence of an optimum pressure for power dissipation for each given operation volt-age amplitude and gas composition can be confirmed and explained by the equivalent circuit model. Increasing the CO2 concentration in the working gas increases the mean reduced electric field strength E/N while pressure reduces it in the BCD. The CO(2)conver-sion shows a maximum efficiency of about 4% at 1.5 bar for the gas mixture Ar/CO2 = 1:1 and a voltage amplitude of about 10 kV. The calculation of thermodynamic equilibrium parameters reveals that a relatively small increase in pressure can affect both, the equi-librium parameters and the reaction rates. As a result, the specific required energy for the reaction ( Delta H/SEI ) shows an optimum, but only 8% of the electrical input energy is spent for CO2 dissociation at these optimum conditions.
引用
收藏
页码:2035 / 2063
页数:29
相关论文
共 50 条
  • [31] ELECTRIC DISSOCIATION OF CO2
    BARTON, MJ
    VONENGEL, A
    PHYSICS LETTERS A, 1970, A 32 (03) : 173 - &
  • [32] THE BEHAVIOR OF TANTALUM IN THE PRESENCE OF CO AND CO/CO2 MIXTURES AT ELEVATED-TEMPERATURES
    CHRYSANTHOU, A
    GRIEVESON, P
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1995, 194 (01): : L11 - L14
  • [33] Refractive index and swelling of thin PMMA films in CO2/MMA mixtures at elevated pressures
    Fehrenbacher, U
    Jakob, T
    Berger, T
    Knoll, W
    Ballauff, M
    FLUID PHASE EQUILIBRIA, 2002, 200 (01) : 147 - 160
  • [34] RF discharge in CO2 laser mixtures at moderate pressures
    Starostin, SA
    Boller, KJ
    Peters, PJM
    Udalov, YB
    Kochetov, IV
    Napartovich, AP
    PLASMA PHYSICS REPORTS, 2002, 28 (01) : 63 - 70
  • [35] RF discharge in CO2 laser mixtures at moderate pressures
    S. A. Starostin
    K. J. Boller
    P. J. M. Peters
    Yu. B. Udalov
    I. V. Kochetov
    A. P. Napartovich
    Plasma Physics Reports, 2002, 28 : 63 - 70
  • [36] VAPOR-LIQUID-EQUILIBRIA FOR CO2/HYDROCARBON MIXTURES AT ELEVATED-TEMPERATURES AND PRESSURES
    INOMATA, H
    ARAI, K
    SAITO, S
    FLUID PHASE EQUILIBRIA, 1987, 36 : 107 - 119
  • [37] Visualization for measuring the PVT property of viscoelastic polystyrene/CO2 mixtures at elevated temperatures and pressures
    Li, Y. G.
    Mahmood, S. H.
    Park, C. B.
    POLYMER TESTING, 2016, 55 : 88 - 96
  • [38] Fluid modelling of CO2 dissociation in a dielectric barrier discharge
    1600, American Institute of Physics Inc. (119):
  • [39] Fluid modelling of CO2 dissociation in a dielectric barrier discharge
    Ponduri, S.
    Becker, M. M.
    Welzel, S.
    van de Sanden, M. C. M.
    Loffhagen, D.
    Engeln, R.
    JOURNAL OF APPLIED PHYSICS, 2016, 119 (09)
  • [40] Experimental studies of THGEM in different Ar/CO2 mixtures
    He Zhan-Ying
    Zhou Jian-Rong
    Sun Zhi-Jia
    Yang Gui-An
    Xu Hong
    Wang Yan-Feng
    Liu Qian
    Liu Hong-Bang
    Chen Shi
    Xie Yi-Gang
    Zheng Yang-Heng
    Wang Xiao-Dong
    Zhang Xiao-Dong
    Hu Bi-Tao
    Chen Yuan-Bo
    CHINESE PHYSICS C, 2014, 38 (05)