Engineering the oxygen-evolution activity by changing the A-site rare-earth elements in RSr3Fe1.5Co1.5O10-δ (R = La, Nd, Pr) Ruddlesden-Popper perovskites

被引:9
作者
Zhu, Wenyun [1 ]
Chen, Jiani [1 ]
Liu, Dongliang [1 ]
Yang, Guangming [1 ]
Zhou, Wei [1 ]
Ran, Ran [1 ]
Yu, Jie [2 ,3 ]
Shao, Zongping [1 ,4 ]
机构
[1] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Peoples R China
[2] Jiangsu Univ Sci & Technol, Sch Energy & Power, Zhenjiang 212100, Peoples R China
[3] Hong Kong Polytech Univ, Res Inst Smart Energy RISE, Res Inst Sustainable Urbanizat RISUD, Dept Bldg & Real Estate,Kowloon, Hong Kong 999077, Peoples R China
[4] Curtin Univ, WA Sch Mines Minerals Energy & Chem Engn, Perth 6102, Australia
基金
中国国家自然科学基金;
关键词
REDUCTION; HYBRID; OXIDES;
D O I
10.1039/d3qm00472d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The design of high-performance and low-cost catalysts for the oxygen evolution reaction (OER) is paramount for storing and converting clean and renewable energy. Ruddlesden-Popper (RP)-structured perovskite oxides show promising potential for efficiently catalyzing the OER. In this study, a series of RP-type perovskites RSr3Fe1.5Co1.5O10-& delta; (R = La, Nd, Pr) are synthesized and investigated to correlate their structure and physical structure properties with OER activities. Among the synthesized materials, PrSr3Fe1.5Co1.5O10-& delta; shows the best OER performance, evidenced by the smallest overpotential (294 mV) as well as the lowest Tafel slope (63 mV dec(-1)). Such enhanced OER behavior is ascribed to larger electrochemically active areas, faster charge transfer rates, higher B-site valence state ions, more oxygen vacancies, and more favorable lattice oxygen oxidation (LOM) behavior. When applied in Zn-air batteries and water electrolyzers, PSFC also outperforms the benchmark catalyst RuO2, suggesting that PSFC has the potential to be an outstanding OER electrocatalyst for practical applications. This study highlights the significance of adjusting A-site elements for improving OER activities.
引用
收藏
页码:4526 / 4534
页数:9
相关论文
共 48 条
[21]   Electrocatalytic behaviour of Cu-substituted La0.5Sr0.5Co0.8Fe0.2-xCuxO3-δ (x=0-0.2) perovskite oxides [J].
Mandal, Rupesh ;
Mahton, Yogendra ;
Sowjanya, Chelluri ;
Sanket, Kumar ;
Behera, Shantanu K. ;
Pratihar, Swadesh K. .
JOURNAL OF SOLID STATE CHEMISTRY, 2023, 317
[22]   Water electrolysis on La1-xSrxCoO3-δ perovskite electrocatalysts [J].
Mefford, J. Tyler ;
Rong, Xi ;
Abakumov, Artem M. ;
Hardin, William G. ;
Dai, Sheng ;
Kolpak, Alexie M. ;
Johnston, Keith P. ;
Stevenson, Keith J. .
NATURE COMMUNICATIONS, 2016, 7
[23]   Dual-Site Catalysis of Fe-Incorporated Oxychlorides as Oxygen Evolution Electrocatalysts [J].
Miyahara, Yuto ;
Fukutsuka, Tomokazu ;
Abe, Takeshi ;
Miyazaki, Kohei .
CHEMISTRY OF MATERIALS, 2020, 32 (19) :8195-8202
[24]   K2NiF4 type oxides, Ln2-xSrxNiO4+δ (Ln = La and Pr; x=0-1.4) as an oxygen electrocatalyst for aqueous lithium-oxygen rechargeable batteries [J].
Mizoguchi, Takashi ;
Sonoki, Hidetoshi ;
Niwa, Eiki ;
Taminato, Sou ;
Mori, Daisuke ;
Takeda, Yasuo ;
Yamamoto, Osamu ;
Imanishi, Nobuyuki .
SOLID STATE IONICS, 2021, 369
[25]   Highly active and stable OER electrocatalysts derived from Sr2MIrO6 for proton exchange membrane water electrolyzers [J].
Retuerto, Maria ;
Pascual, Laura ;
Torrero, Jorge ;
Salam, Mohamed Abdel ;
Tolosana-Moranchel, Alvaro ;
Gianolio, Diego ;
Ferrer, Pilar ;
Kayser, Paula ;
Wilke, Vincent ;
Stiber, Svenja ;
Celorrio, Veronica ;
Mokthar, Mohamed ;
Sanchez, Daniel Garcia ;
Gago, Aldo Saul ;
Friedrich, Kaspar Andreas ;
Pena, Miguel Antonio ;
Alonso, Jose Antonio ;
Rojas, Sergio .
NATURE COMMUNICATIONS, 2022, 13 (01)
[26]   Copper foam-derived electrodes as efficient electrocatalysts for conventional and hybrid water electrolysis [J].
Sun, Hainan ;
Kim, Hyunseung ;
Song, Sanzhao ;
Jung, Woochul .
MATERIALS REPORTS: ENERGY, 2022, 2 (02)
[27]   Electrochemical Water Splitting: Bridging the Gaps Between Fundamental Research and Industrial Applications [J].
Sun, Hainan ;
Xu, Xiaomin ;
Kim, Hyunseung ;
Jung, WooChul ;
Zhou, Wei ;
Shao, Zongping .
ENERGY & ENVIRONMENTAL MATERIALS, 2023, 6 (05)
[28]   High Configuration Entropy Activated Lattice Oxygen for O2 Formation on Perovskite Electrocatalyst [J].
Tang, Lina ;
Yang, Yanling ;
Guo, Hongquan ;
Wang, Yue ;
Wang, Mengjie ;
Liu, Zuoqing ;
Yang, Guangming ;
Fu, Xianzhu ;
Luo, Yang ;
Jiang, Chenxing ;
Zhao, Yingru ;
Shao, Zongping ;
Sun, Yifei .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (28)
[29]   Study of the n=3 Ruddlesden-Popper phases LnSr3Fe1.5Co1.5O10-δ (Ln = La, Pr, Nd) as oxygen reduction electrodes by impedance spectroscopy [J].
Vega-Castillo, J. ;
Prado, F. .
SOLID STATE IONICS, 2018, 325 :228-237
[30]   Engineering transition metal-based nanomaterials for high-performance electrocatalysis [J].
Wang, Changhong ;
Li, Changming ;
Liu, Jinlong ;
Guo, Chunxian .
MATERIALS REPORTS: ENERGY, 2021, 1 (01)