Two-time capture of coordinated evaders in a simple pursuit problem

被引:2
作者
Petrov, N. N. [1 ]
机构
[1] Udmurt State Univ, Dept Differential Equat, Lab Math Control Theory, Ul Univ Skaya 1, Izhevsk 426034, Russia
来源
VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI | 2023年 / 33卷 / 02期
关键词
differential game; group pursuit; pursuer; evader; MULTIPLE CAPTURE; EVASION; GAME;
D O I
10.35634/vm230207
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a finite-dimensional Euclidean space, the problem of pursuit of two evaders by a group of pursuers described by a system of the formzij = ui -v, ui, v & ISIN; V,is considered. It is assumed that all evaders use the same control. The pursuers use counterstrategies based on information about the initial positions and control history of the evaders. The set of admissible controls V is a unit ball centered at zero, target sets are the origin of coordinates. The goal of the pursuers' group is to capture at least one evader by two pursuers. In terms of initial positions and game parameters a sufficient condition for the capture is obtained. In the study, the method of resolving functions is used as a basic one, which allows obtaining sufficient conditions for the solvability of the approach problem in some guaranteed time.
引用
收藏
页码:281 / 292
页数:12
相关论文
共 35 条
  • [1] STACKELBERG SOLUTION OF FIRST-ORDER MEAN FIELD GAME WITH A MAJOR PLAYER
    Averboukh, Yu
    [J]. IZVESTIYA INSTITUTA MATEMATIKI I INFORMATIKI-UDMURTSKOGO GOSUDARSTVENNOGO UNIVERSITETA, 2018, 52 : 3 - 12
  • [2] Blagodatskikh A. I., 2009, Conflict interaction of managed objects groups
  • [3] Simultaneous Multiple Capture of Rigidly Coordinated Evaders
    Blagodatskikh, Aleksandr, I
    Petrov, Nikolai N.
    [J]. DYNAMIC GAMES AND APPLICATIONS, 2019, 9 (03) : 594 - 613
  • [4] [Благодатских Александр Иванович Blagodatskikh Aleksandr Ivanovich], 2016, [Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, Bulletin of Udmurt University. Mathematics. Mechanics. Computer Science, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Komp'yuternye nauki], V26, P46, DOI 10.20537/vm160104
  • [5] k-Capture in multiagent pursuit evasion, or the lion and the hyenas
    Bopardikar, Shaunak D.
    Suri, Subhash
    [J]. THEORETICAL COMPUTER SCIENCE, 2014, 522 : 13 - 23
  • [6] A discrete-time pursuit-evasion game in convex polygonal environments
    Casini, Marco
    Criscuoli, Matteo
    Garulli, Andrea
    [J]. SYSTEMS & CONTROL LETTERS, 2019, 125 : 22 - 28
  • [7] CHERNOUSKO FL, 1976, PMM-J APPL MATH MEC+, V40, P11
  • [8] Chikrii A.A., 1997, CONFLICT CONTROLLED
  • [9] Friedman A., 1971, DIFFERENTIAL GAMES
  • [10] Grigorenko N. L., 1985, SOV MATH DOKL, V31, P550