Improved Lower Bounds on the Extrema of Eigenvalues of Graphs

被引:1
作者
Linz, William [1 ]
机构
[1] Univ South Carolina, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Eigenvalues; Icosahedral graph; kth largest eigenvalue;
D O I
10.1007/s00373-023-02678-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we improve the lower bounds for the maximum size of the kth largest eigenvalue of the adjacency matrix of a graph for several values of k. In particular, we show that closed blowups of the icosahedral graph improve the lower bound for the maximum size of the fourth largest eigenvalue of a graph, answering a question of Nikiforov.
引用
收藏
页数:4
相关论文
共 50 条
[41]   A NOTE ON VARIANCE BOUNDS AND LOCATION OF EIGENVALUES [J].
Sharma, R. ;
Sharma, A. ;
Saini, R. .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (01) :67-80
[42]   Bounds for eigenvalues of the adjacency matrix of a graph [J].
Bhunia, Pintu ;
Bag, Santanu ;
Paul, Kallol .
JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2019, 22 (04) :415-432
[43]   UNIVERSAL BOUNDS FOR EIGENVALUES OF THE POLYHARMONIC OPERATORS [J].
Jost, Juergen ;
Li-Jost, Xianqing ;
Wang, Qiaoling ;
Xia, Changyu .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (04) :1821-1854
[44]   Three absolute perturbation bounds for matrix eigenvalues imply relative bounds [J].
Eisenstat, SC ;
Ipsen, ICF .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (01) :149-158
[45]   Degree subtraction eigenvalues and energy of graphs [J].
Ramane, H. S. ;
Nandeesh, K. C. ;
Gudodagi, G. A. ;
Zhou, B. .
COMPUTER SCIENCE JOURNAL OF MOLDOVA, 2018, 26 (02) :146-162
[47]   Small regular graphs with four eigenvalues [J].
van Dam, ER ;
Spence, E .
DISCRETE MATHEMATICS, 1998, 189 (1-3) :233-257
[48]   Matchings in regular graphs from eigenvalues [J].
Cioaba, Sebastian M. ;
Gregory, David A. ;
Haemers, Willem H. .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (02) :287-297
[49]   Eigenvalues and [ a , b ]-factors in regular graphs [J].
Suil, O. .
JOURNAL OF GRAPH THEORY, 2022, 100 (03) :458-469
[50]   BOUNDS OF MODULUS OF EIGENVALUES BASED ON STEIN EQUATION [J].
Hu, Guang-Da ;
Zhu, Qiao .
KYBERNETIKA, 2010, 46 (04) :655-664