UHRF1 is a mediator of KRAS driven oncogenesis in lung adenocarcinoma

被引:13
作者
Kostyrko, Kaja [1 ]
Roman, Marta [1 ]
Lee, Alex G. [1 ]
Simpson, David R. [1 ]
Dinh, Phuong T. [1 ]
Leung, Stanley G. [1 ]
Marini, Kieren D. [1 ]
Kelly, Marcus R. [2 ]
Broyde, Joshua [3 ]
Califano, Andrea [3 ,4 ,5 ,6 ,7 ]
Jackson, Peter K. [2 ]
Sweet-Cordero, E. Alejandro [1 ]
机构
[1] Univ Calif San Francisco, Dept Pediat, Div Oncol, San Francisco, CA 94143 USA
[2] Stanford Univ, Dept Microbiol & Immunol, Baxter Lab, Sch Med, Stanford, CA USA
[3] Columbia Univ, Dept Syst Biol, New York, NY USA
[4] Columbia Univ, Dept Biomed Informat, New York, NY USA
[5] Columbia Univ, Herbert Irving Comprehens Canc Ctr, New York, NY USA
[6] Columbia Univ, Dept Biochem & Mol Biophys, New York, NY USA
[7] Columbia Univ, Vagelos Coll Phys & Surg, Dept Med, New York, NY USA
基金
瑞士国家科学基金会;
关键词
DNA METHYLATION; CANCER; EXPRESSION; CONTRIBUTES; INHIBITION; PATHWAY; GENOME; P53;
D O I
10.1038/s41467-023-39591-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
KRAS is a frequent driver in lung cancer. To identify KRAS-specific vulnerabilities in lung cancer, we performed RNAi screens in primary spheroids derived from a Kras mutant mouse lung cancer model and discovered an epigenetic regulator Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). In human lung cancer models UHRF1 knock-out selectively impaired growth and induced apoptosis only in KRAS mutant cells. Genome-wide methylation and gene expression analysis of UHRF1-depleted KRAS mutant cells revealed global DNA hypomethylation leading to upregulation of tumor suppressor genes (TSGs). A focused CRISPR/Cas9 screen validated several of these TSGs as mediators of UHRF1-driven tumorigenesis. In vivo, UHRF1 knock-out inhibited tumor growth of KRAS-driven mouse lung cancer models. Finally, in lung cancer patients high UHRF1 expression is anti-correlated with TSG expression and predicts worse outcomes for patients with KRAS mutant tumors. These results nominate UHRF1 as a KRAS-specific vulnerability and potential target for therapeutic intervention. Identifying KRAS-specific vulnerabilities helps to target KRAS-driven cancer. Here the authors perform RNA interference screens in 3D cultures of primary tumour cells with KRAS activation and p53 loss and identify UHRF1 as a vulnerability of KRAS-mutant lung cancers
引用
收藏
页数:18
相关论文
共 78 条
  • [1] UHRF1 regulation of the Keap1-Nrf2 pathway in pancreatic cancer contributes to oncogenesis
    Abu-Alainin, Wafa
    Gana, Thompson
    Liloglou, Triantafillos
    Olayanju, Adedamola
    Barrera, Lawrence N.
    Ferguson, Robert
    Campbell, Fiona
    Andrews, Timothy
    Goldring, Christopher
    Kitteringham, Neil
    Park, Brian K.
    Nedjadi, Taoufik
    Schmid, Michael C.
    Slupsky, Joseph R.
    Greenhalf, William
    Neoptolemos, John P.
    Costello, Eithne
    [J]. JOURNAL OF PATHOLOGY, 2016, 238 (03) : 423 - 433
  • [2] Synthetic Lethal Vulnerabilities in KRAS-Mutant Cancers
    Aguirre, Andrew J.
    Hahn, William C.
    [J]. COLD SPRING HARBOR PERSPECTIVES IN MEDICINE, 2018, 8 (08):
  • [3] Functional characterization of somatic mutations in cancer using network-based inference of protein activity
    Alvarez, Mariano J.
    Shen, Yao
    Giorgi, Federico M.
    Lachmann, Alexander
    Ding, B. Belinda
    Ye, B. Hilda
    Califano, Andrea
    [J]. NATURE GENETICS, 2016, 48 (08) : 838 - +
  • [4] Acquired Resistance to KRASG12C Inhibition in Cancer
    Awad, M. M.
    Liu, S.
    Rybkin, I. I.
    Arbour, K. C.
    Dilly, J.
    Zhu, V. W.
    Johnson, M. L.
    Heist, R. S.
    Patil, T.
    Riely, G. J.
    Jacobson, J. O.
    Yang, X.
    Persky, N. S.
    Root, D. E.
    Lowder, K. E.
    Feng, H.
    Zhang, S. S.
    Haigis, K. M.
    Hung, Y. P.
    Sholl, L. M.
    Wolpin, B. M.
    Wiese, J.
    Christiansen, J.
    Lee, J.
    Schrock, A. B.
    Lim, L. P.
    Garg, K.
    Li, M.
    Engstrom, L. D.
    Waters, L.
    Lawson, J. D.
    Olson, P.
    Lito, P.
    Ou, S. -H. I.
    Christensen, J. G.
    Janne, P. A.
    Aguirre, A. J.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (25) : 2382 - 2393
  • [5] The SRA protein UHRF1 promotes epigenetic crosstalks and is involved in prostate cancer progression
    Babbio, F.
    Pistore, C.
    Curti, L.
    Castiglioni, I.
    Kunderfranco, P.
    Brino, L.
    Oudet, P.
    Seiler, R.
    Thalman, G. N.
    Roggero, E.
    Sarti, M.
    Pinton, S.
    Mello-Grand, M.
    Chiorino, G.
    Catapano, C. V.
    Carbone, G. M.
    Bonapace, I. M.
    [J]. ONCOGENE, 2012, 31 (46) : 4878 - 4887
  • [6] Epigenetic Determinants of Cancer
    Baylin, Stephen B.
    Jones, Peter A.
    [J]. COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2016, 8 (09):
  • [7] ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks
    Bindea, Gabriela
    Mlecnik, Bernhard
    Hackl, Hubert
    Charoentong, Pornpimol
    Tosolini, Marie
    Kirilovsky, Amos
    Fridman, Wolf-Herman
    Pages, Franck
    Trajanoski, Zlatko
    Galon, Jerome
    [J]. BIOINFORMATICS, 2009, 25 (08) : 1091 - 1093
  • [8] UHRF1 plays a role in maintaining DNA methylation in mammalian cells
    Bostick, Magnolia
    Kim, Jong Kyong
    Esteve, Pierre-Olivier
    Clark, Amander
    Pradhan, Sriharsa
    Jacobsen, Steven E.
    [J]. SCIENCE, 2007, 317 (5845) : 1760 - 1764
  • [9] Easy quantitative assessment of genome editing by sequence trace decomposition
    Brinkman, Eva K.
    Chen, Tao
    Amendola, Mario
    van Steensel, Bas
    [J]. NUCLEIC ACIDS RESEARCH, 2014, 42 (22)
  • [10] Oncoprotein-specific molecular interaction maps (SigMaps) for cancer network analyses
    Broyde, Joshua
    Simpson, David R.
    Murray, Diana
    Paull, Evan O.
    Chu, Brennan W.
    Tagore, Somnath
    Jones, Sunny J.
    Griffin, Aaron T.
    Giorgi, Federico M.
    Lachmann, Alexander
    Jackson, Peter
    Sweet-Cordero, E. Alejandro
    Honig, Barry
    Califano, Andrea
    [J]. NATURE BIOTECHNOLOGY, 2021, 39 (02) : 215 - 224