Electrically controllable spin polarization in collinear antiferromagnetic junctions

被引:1
作者
Niu, Zhi Ping [1 ,2 ]
Wen, Xin Pei [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Phys, Nanjing 211106, Peoples R China
[2] MIIT, Key Lab Aerosp Informat Mat & Phys NUAA, Nanjing 211106, Peoples R China
关键词
spintronics; collinear antiferromagnet; spin polarization; SCHEME;
D O I
10.1088/1361-6463/acd401
中图分类号
O59 [应用物理学];
学科分类号
摘要
Antiferromagnetic spintronics is a rapidly growing subfield of spintronics in condensed-matter physics and information technology. Electrical current in collinear antiferromagnetic materials is typically spin unpolarized, limiting the realization of antiferromagnetic spintronics effects. Here we study the transport in the collinear antiferromagnetic junctions by applying a transverse electric field E ( y ) to the antiferromagnets (AFs). The band structures of the collinear AFs may become spin-polarized when the combined time reversal and lattice translation symmetry is broken by E ( y ). The separation between spin-up and spin-down bands is controlled by E ( y ). Full spin polarization originating from spin-polarized states near the band gap's edges is observed at high exchange energy. In particular, as E ( y ) increases, the region capable of generating high spin polarization broadens due to the increased separation between spin-up and spin-down bands. The amplitude and sign of spin polarization can be controlled by E ( y ). These characteristics indicate that collinear AF materials are ideal for future spintronics applications.
引用
收藏
页数:6
相关论文
共 50 条
[31]   The role of quantum vibronic effects in the spin polarization of charge transport through molecular junctions [J].
Rudge, S. L. ;
Kaspar, C. ;
Smorka, R. ;
Preston, R. J. ;
Subotnik, J. ;
Thoss, M. .
JOURNAL OF CHEMICAL PHYSICS, 2025, 162 (24)
[32]   Spin polarization and Zeeman effects in ferromagnet/ferromagnetic p-wave superconductor junctions [J].
Li, Hong ;
Yang, Xinjian .
SOLID STATE COMMUNICATIONS, 2011, 151 (01) :75-79
[33]   A controllable spin prism [J].
Hakioglu, T. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (02)
[34]   Electrically induced and detected Neel vector reversal in a collinear antiferromagnet [J].
Godinho, J. ;
Reichlova, H. ;
Kriegner, D. ;
Novak, V. ;
Olejnik, K. ;
Kaspar, Z. ;
Soban, Z. ;
Wadley, P. ;
Campion, R. P. ;
Otxoa, R. M. ;
Roy, P. E. ;
Zelezny, J. ;
Jungwirth, T. ;
Wunderlich, J. .
NATURE COMMUNICATIONS, 2018, 9
[35]   Spin transport in antiferromagnetic insulators [J].
邱志勇 ;
侯达之 .
Chinese Physics B, 2019, 28 (08) :14-19
[36]   Spin filtration in an antiferromagnetic ladder [J].
Das Gupta, Debjani ;
Maiti, Santanu K. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2022, 546
[37]   Spin transport in antiferromagnetic insulators [J].
Qiu, Zhiyong ;
Hou, Dazhi .
CHINESE PHYSICS B, 2019, 28 (08)
[38]   Altermagnetism in NiSi and Antiferromagnetic Candidate Materials with Non-Collinear Spins [J].
Singh, Deepak K. ;
Cheong, Sang-Wook ;
Guo, Jiasen .
ADVANCED PHYSICS RESEARCH, 2025, 4 (05)
[39]   Simulation of the spin polarization and the charge transport in Zener tunnel junctions based on ferromagnetic GaAs and ZnO [J].
Comesana, E. ;
Aldegunde, M. ;
Garcia-Loureiro, A. J. .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (03) :746-756
[40]   Structure-dependent magnetoresistance and spin-transfer torque in antiferromagnetic Fe|MgO|FeMn|Cu tunnel junctions [J].
Jia, Xingtao ;
Tang, Huimin ;
Wang, Shizhuo ;
Qin, Minghui .
PHYSICAL REVIEW B, 2017, 95 (06)