Supervised learning of random quantum circuits via scalable neural networks

被引:5
作者
Cantori, Simone [1 ]
Vitali, David [1 ,2 ,3 ]
Pilati, Sebastiano [1 ,2 ]
机构
[1] Univ Camerino, Sch Sci & Technol, Phys Div, I-62032 Camerino, MC, Italy
[2] INFN Sez Perugia, I-06123 Perugia, Italy
[3] CNR INO, I-50125 Florence, Italy
关键词
random quantum circuits; quantum computing; deep learning;
D O I
10.1088/2058-9565/acc4e2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Predicting the output of quantum circuits is a hard computational task that plays a pivotal role in the development of universal quantum computers. Here we investigate the supervised learning of output expectation values of random quantum circuits. Deep convolutional neural networks (CNNs) are trained to predict single-qubit and two-qubit expectation values using databases of classically simulated circuits. These circuits are built using either a universal gate set or a continuous set of rotations plus an entangling gate, and they are represented via properly designed encodings of these gates. The prediction accuracy for previously unseen circuits is analyzed, also making comparisons with small-scale quantum computers available from the free IBM Quantum program. The CNNs often outperform these quantum devices, depending on the circuit depth, on the network depth, and on the training set size. Notably, our CNNs are designed to be scalable. This allows us exploiting transfer learning and performing extrapolations to circuits larger than those included in the training set. These CNNs also demonstrate remarkable resilience against noise, namely, they remain accurate even when trained on (simulated) expectation values averaged over very few measurements.
引用
收藏
页数:20
相关论文
共 64 条
  • [1] Aharonov D., 1999, ANN REV COMPUTATIONA, P259, DOI [10.1142/97898128155690007, DOI 10.1142/97898128155690007]
  • [2] [Anonymous], 2021, I.B.M. Quantum
  • [3] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [4] A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking
    Ballester, Pedro J.
    Mitchell, John B. O.
    [J]. BIOINFORMATICS, 2010, 26 (09) : 1169 - 1175
  • [5] Improving Variational Quantum Optimization using CVaR
    Barkoutsos, Panagiotis Kl.
    Nannicini, Giacomo
    Robert, Anton
    Tavernelli, Ivano
    Woerner, Stefan
    [J]. QUANTUM, 2020, 4
  • [6] Quantum complexity theory
    Bernstein, E
    Vazirani, U
    [J]. SIAM JOURNAL ON COMPUTING, 1997, 26 (05) : 1411 - 1473
  • [7] Blania A., 2022, arXiv
  • [8] Boixo S, 2014, NAT PHYS, V10, P218, DOI [10.1038/nphys2900, 10.1038/NPHYS2900]
  • [9] Experimental signature of programmable quantum annealing
    Boixo, Sergio
    Albash, Tameem
    Spedalieri, Federico M.
    Chancellor, Nicholas
    Lidar, Daniel A.
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [10] A new universal and fault-tolerant quantum basis
    Boykin, PO
    Mor, T
    Pulver, M
    Roychowdhury, V
    Vatan, F
    [J]. INFORMATION PROCESSING LETTERS, 2000, 75 (03) : 101 - 107