Fast ion conduction assisted by covalent organic frameworks in poly (ethylene oxide)-based composite electrolyte enabling high-energy and strong-stability all-solid-state lithium metal batteries

被引:7
|
作者
Chen, Jing [1 ]
Zhang, Jing [1 ]
Wang, Xiaodong [2 ,3 ]
Fu, Ning [4 ]
Yang, Zhenglong [1 ]
机构
[1] Tongji Univ, Sch Mat Sci & Engn, Key Lab Adv Civil Engn Mat, Minist Educ, Shanghai 200092, Peoples R China
[2] Tongji Univ, Shanghai Key Lab Special Artificial Microstruct Ma, Shanghai 200092, Peoples R China
[3] Tongji Univ, Sch Phys Sci & Engn, Shanghai 200092, Peoples R China
[4] Anyang Inst Technol, Sch Chem & Environm Engn, Anyang 455000, Peoples R China
基金
中国国家自然科学基金;
关键词
Covalent organic frameworks; PEO-based composite electrolyte; All -solid-state Li battery; Incomparable cycling stability; PEO; CRYSTALLINE;
D O I
10.1016/j.electacta.2023.142267
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The synthesized covalent organic frameworks (COFs) have greatly numerous interior spaces and ordered organic skeletons and channels. On the one hand, their special structures spread all over the poly(ethylene oxide) (PEO) matrix could enhance the mechanical strength of solid-state electrolytes, help improve physical stability against moisture and chemical/electrochemical stability against Li metal. On the other hand, they not only have the property of inorganic nanoparticles to decrease the PEO crystalline region but also provide fast ion transport pathways for PEO-based electrolyte. In this work, merely 3wt.% synthesized COF CPs-BT powder can greatly improve the electrochemical performance of solid-state PEO-based electrolytes. The COF-related electrolytes show an ionic conductivity up to 1.5 x 10-4 S cm-1 at 40 degrees C. And the corresponding LiFePO4/Li metal cells exhibit incomparable cycling stability among reported solid-state PEO-based composite electrolytes, even though having undergone the multiple high-rate tests and 350 times cycling charge and discharge, they can discharge 155 mAh g-1 capacity with almost 100% coulombic efficiency. It should be noted that this electrolyte has no any liquid solution and the electrochemical performance improvement is mainly ascribed to the COF additive CPs-BT.
引用
收藏
页数:8
相关论文
共 34 条
  • [31] Zinc bis(2-ethylhexanoate), a homogeneous and bifunctional additive, to improve conductivity and lithium deposition for poly (ethylene oxide) based all-solid-state lithium metal battery
    Zeng, Ziqi
    Liu, Guizhou
    Jiang, Zhipeng
    Peng, Linfeng
    Xie, Jia
    JOURNAL OF POWER SOURCES, 2020, 451 (451)
  • [32] A Squaraine-Linked Zwitterionic Covalent Organic Framework Nanosheets Enhanced Poly(ethylene oxide) Composite Polymer Electrolyte for Quasi-Solid-State Li-S Batteries
    Wang, Yue
    Geng, Shiqun
    Yan, Gaojie
    Liu, Xiaonan
    Zhang, Xiaojie
    Feng, Yi
    Shi, Jingjing
    Qu, Xiongwei
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (02): : 2495 - 2504
  • [33] Metal-organic framework (MOF)-incorporated polymeric electrolyte realizing fast lithium-ion transportation with high Li+ transference number for solid-state batteries
    Xu, Yifan
    Zhao, Ruo
    Fang, Jianjun
    Liang, Zibin
    Gao, Lei
    Bian, Juncao
    Zhu, Jinlong
    Zhao, Yusheng
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [34] High-performance Li6.4La3Zr1.4Ta0.6O12/Poly(ethylene oxide)/Succinonitrile composite electrolyte for solid-state lithium batteries
    Zha, Wenping
    Chen, Fei
    Yang, Dunjie
    Shen, Qiang
    Zhang, Lianmeng
    JOURNAL OF POWER SOURCES, 2018, 397 : 87 - 94