Selection Bias with Outcome-dependent Sampling

被引:4
|
作者
Sjolander, Arvid [1 ]
机构
[1] Karolinska Inst, Dept Med Epidemiol & Biostat, Nobels Vag 12A, S-17177 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
Causal diagrams; Causality; Counterfactual graphs; Outcome-dependent sampling; Selection bias; CAUSAL INFERENCE; DEFINITION; ASSUMPTION; BOUNDS;
D O I
10.1097/EDE.0000000000001567
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
In a seminal paper, Hernan et al. 2004 provided a systematic classification of selection biases, for scenarios where the selection is a collider between the exposure and the outcome. Hernan 2017 discussed another scenario, where the selection is statistically independent of the exposure, but associated with the outcome through common causes. In this note, we extend the discussion to scenarios where the selection is directly influenced by the outcome, but not by the exposure. We discuss whether these types of outcome-dependent selections preserve the sharp causal null hypothesis, and whether or not they allow for estimation of causal effects in the selected sample and/or in the source population.
引用
收藏
页码:186 / 191
页数:6
相关论文
共 50 条
  • [1] Graphical Models for Inference Under Outcome-Dependent Sampling
    Didelez, Vanessa
    Kreiner, Svend
    Keiding, Niels
    STATISTICAL SCIENCE, 2010, 25 (03) : 368 - 387
  • [2] Causal Bounds for Outcome-Dependent Sampling in Observational Studies
    Gabriel, Erin E.
    Sachs, Michael C.
    Sjolander, Arvid
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2022, 117 (538) : 939 - 950
  • [3] Accelerated failure time model for data from outcome-dependent sampling
    Jichang Yu
    Haibo Zhou
    Jianwen Cai
    Lifetime Data Analysis, 2021, 27 : 15 - 37
  • [4] Causal inference in outcome-dependent two-phase sampling designs
    Wang, Weiwei
    Scharfstein, Daniel
    Tan, Zhiqiang
    MacKenzie, Ellen J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 947 - 969
  • [5] Statistical inference for the additive hazards model under outcome-dependent sampling
    Yu, Jichang
    Liu, Yanyan
    Sandler, Dale P.
    Zhou, Haibo
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2015, 43 (03): : 436 - 453
  • [6] Accelerated failure time model for data from outcome-dependent sampling
    Yu, Jichang
    Zhou, Haibo
    Cai, Jianwen
    LIFETIME DATA ANALYSIS, 2021, 27 (01) : 15 - 37
  • [7] Outcome-dependent sampling design and inference for Cox's proportional hazards Model
    Yu, Jichang
    Liu, Yanyan
    Cai, Jianwen
    Sandler, Dale P.
    Zhou, Haibo
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2016, 178 : 24 - 36
  • [8] Optimal allocation in stratified cluster-based outcome-dependent sampling designs
    Sauer, Sara
    Hedt-Gauthier, Bethany
    Haneuse, Sebastien
    STATISTICS IN MEDICINE, 2021, 40 (18) : 4090 - 4107
  • [9] A partially linear regression model for data from an outcome-dependent sampling design
    Zhou, Haibo
    You, Jinhong
    Qin, Guoyou
    Longnecker, Matthew P.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2011, 60 : 559 - 574
  • [10] Optimal sampling allocation for outcome-dependent designs in cluster-correlated data settings
    Rivera-Rodriguez, Claudia
    Haneuse, Sebastien
    Sauer, Sara
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2022, 31 (12) : 2400 - 2414