Electrolyte additive of sorbitol rendering aqueous zinc-ion batteries with dendrite-free behavior and good anti-freezing ability

被引:100
作者
Quan, Yuhui [1 ]
Yang, Ming [2 ]
Chen, Minfeng [1 ]
Zhou, Weijun [1 ]
Han, Xiang [1 ,3 ]
Chen, Jizhang [1 ,3 ]
Liu, Bo [4 ]
Shi, Siqi [5 ]
Zhang, Peixin [2 ]
机构
[1] Nanjing Forestry Univ, Coll Mat Sci & Engn, Nanjing 210037, Peoples R China
[2] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen 518060, Peoples R China
[3] Nanjing Forestry Univ, Coinnovat Ctr Efficient Proc & Utilizat Forest Res, Nanjing 210037, Peoples R China
[4] Jinggangshan Univ, Coll Math & Phys, Jian 343009, Peoples R China
[5] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous Zn-ion batteries; Sorbitol additives; Electrolyte modifications; Interfacial stability; Low-temperature performances; CHALLENGES; ANODE;
D O I
10.1016/j.cej.2023.141392
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The benefits from Zn metal anodes and aqueous electrolytes have endowed aqueous zinc-ion batteries with widespread concerns, whereas they are compromised by Zn dendrites, severe side reactions, and poor tolerance to low-temperature environments. Herein, food-grade sorbitol with abundant hydroxyl groups is used as the electrolyte additive, which can interact strongly with both water molecules and Zn electrode, thus tailoring the solvation sheath of hydrated Zn2+ ions, tuning the surface of Zn electrode, improving the wettability with Zn electrode, broadening the working potential of electrolyte, lowering the desolvation activation energy, enhancing the Zn2+ ion transfer number, preventing the corrosion issue, and enhancing the freezing-tolerance ability. According to a series of electrochemical tests as well as in-situ and ex-situ measurements, the addition of 10 % sorbitol into aqueous electrolyte can effectively inhibit dendritic growth and harmful side reactions at the surface of Zn electrode. Hence, the modified electrolyte enables Zn/MnO2 battery to own superior cyclability (89.5 % capacity retention after 1000 cycles) and slow self-discharge rate. Even at a low temperature of - 10 degrees C, the battery can still offer good electrochemical performances, while that without sorbitol additive can not work normally. This work offers a facile strategy to realize durable anti-freezing aqueous batteries.
引用
收藏
页数:9
相关论文
共 45 条
[31]   Thin and strong Janus separator based on nanocellulose and Ti3C2Tx for dendrite-free aqueous zinc-ion batteries [J].
Wu, Tian ;
Ma, Hong ;
Chen, Minfeng ;
Han, Xiang ;
Tian, Qinghua ;
Chen, Jizhang .
JOURNAL OF ENERGY STORAGE, 2023, 73
[32]   Highly stable aqueous zinc-ion batteries enabled by suppressing the dendrite and by-product formation in multifunctional Al3+ electrolyte additive [J].
Xianlin Zhou ;
Kaixuan Ma ;
Qianyu Zhang ;
Gongzheng Yang ;
Chengxin Wang .
Nano Research, 2022, 15 :8039-8047
[33]   Dual Porous 3D Zinc Anodes toward Dendrite-Free and Long Cycle Life Zinc-Ion Batteries [J].
Chen, Kai ;
Guo, Huinan ;
Li, Weiqin ;
Wang, Yijing .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (46) :54990-54996
[34]   Highly stable aqueous zinc-ion batteries enabled by suppressing the dendrite and by-product formation in multifunctional Al3+ electrolyte additive [J].
Zhou, Xianlin ;
Ma, Kaixuan ;
Zhang, Qianyu ;
Yang, Gongzheng ;
Wang, Chengxin .
NANO RESEARCH, 2022, 15 (09) :8039-8047
[35]   Self-healable hydrogel electrolyte for dendrite-free and self-healable zinc-based aqueous batteries [J].
Ling, Wei ;
Mo, Funian ;
Wang, Jiaqi ;
Liu, Qingjiang ;
Liu, Yao ;
Yang, Qixin ;
Qiu, Yejun ;
Huang, Yan .
MATERIALS TODAY PHYSICS, 2021, 20
[36]   Polytetrafluoroethylene/polyvinyl alcohol derived nanofibers separator for dendrite free and high ionic conductivity aqueous zinc-ion batteries [J].
Wang, Zhenzhen ;
Guo, Taiyu ;
Zhang, Minghui ;
Zhao, Lei ;
He, Tieshi .
JOURNAL OF ENERGY STORAGE, 2025, 108
[37]   Multi-Component Crosslinked Hydrogel Electrolyte toward Dendrite-Free Aqueous Zn Ion Batteries with High Temperature Adaptability [J].
Lu, Hongyu ;
Hu, Jisong ;
Wang, Litong ;
Li, Jianzhu ;
Ma, Xiang ;
Zhu, Zhicheng ;
Li, Heqi ;
Zhao, Yingjie ;
Li, Yujie ;
Zhao, Jingxin ;
Xu, Bingang .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (19)
[38]   Effective control of the solution environment in aqueous Zinc-ion batteries for promoting (002)-textured zinc growth by a Bio-electrolyte additive [J].
Xiong, Yarui ;
Teng, Weiyu ;
Zhao, Zhiwei ;
Xu, Shilin ;
Ma, Yingyuan ;
Gong, Yingzhen ;
Li, Dehua ;
Wang, Xun ;
Shen, Yaoxi ;
Shen, Zhen ;
Hu, Yi .
ENERGY STORAGE MATERIALS, 2025, 74
[39]   Achieving dendrite-free anodes for aqueous zinc ion batteries using zinc anode coated with a rGO/biomass carbon composite for interfacial modification [J].
Zhu, Lin ;
Zhou, Hao ;
Zhu, Dongbo ;
Zheng, Wenjing ;
Guan, Jie ;
Zhang, Kan .
MATERIALS CHEMISTRY FRONTIERS, 2025, 9 (14) :2232-2242
[40]   Suppressing Dendrite Growth and Side Reactions via Mechanically Robust Laponite-Based Electrolyte Membranes for Ultrastable Aqueous Zinc-Ion Batteries [J].
Tian, Siyu ;
Hwang, Taesoon ;
Tian, Yafen ;
Zhou, Yue ;
Zhou, Long ;
Milazzo, Tye ;
Moon, Seunghyun ;
Estalaki, Sina Malakpour ;
Wu, Shiwen ;
Jian, Ruda ;
Balkus, Kenneth ;
Luo, Tengfei ;
Cho, Kyeongjae ;
Xiong, Guoping .
ACS NANO, 2023, 17 (15) :14930-14942