Optical properties of vehicular brown carbon emissions: Road tunnel and chassis dynamometer tests

被引:9
作者
Ho, Chung Song [1 ,2 ,3 ]
Lv, Zongyan [1 ,2 ]
Peng, Jianfei [1 ,2 ]
Zhang, Jinsheng [1 ,2 ]
Choe, Tong-Hyok [4 ]
Zhang, Qijun [1 ,2 ]
Du, Zhuofei [1 ,2 ]
Mao, Hongjun [1 ,2 ]
机构
[1] Nankai Univ, Coll Environm Sci & Engn, Tianjin Key Lab Urban Transport Emiss Res, Tianjin 300071, Peoples R China
[2] Nankai Univ, Coll Environm Sci & Engn, State Environm Protect Key Lab Urban Ambient Air P, Tianjin 300071, Peoples R China
[3] Kim Il Sung Univ, High Tech Res & Dev Ctr, Pyongyang 999093, North Korea
[4] Kim Il Sung Univ, Fac Global Environm Sci, Pyongyang 999093, North Korea
基金
中国国家自然科学基金;
关键词
Brown carbon; Vehicular emission; Absorption Angstrom exponent; Emission factor; Black carbon; LIGHT-ABSORPTION PROPERTIES; PARTICULATE MATTER EMISSIONS; BLACK CARBON; VEHICLE EMISSIONS; COAL COMBUSTION; PARTICLE NUMBER; GASOLINE; AEROSOL; MASS; BIOMASS;
D O I
10.1016/j.envpol.2023.121037
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Brown carbon (BrC), as an important light-absorbing aerosol, significantly impacts regional and global climate. Vehicle emission is a nonnegligible source of BrC, but the optical properties of BrC emitted from vehicles remain poorly understood. This study evaluates the absorption Angstrom exponent (AAE) of traffic-related light-absorbing aerosols (i.e., AAE(Tr)) and the absorption emission factor (EFabs) of vehicular BrC via chassis dynamometer tests and a road tunnel measurement in Tianjin, China. AAE(Tr) are estimated as 0.98-1.33 and 1.11 +/- 0.001 for tested vehicles and on-road vehicle fleet, respectively. The AAE of vehicular BrC (AAE(BrC)) is 3.83 +/- 0.092 for on-road vehicle fleet. The vehicle technology updates effectively reduce the EFabs of vehicular BrC. Among the four tested China 5 and China 6 gasoline vehicles in the chassis dynamometer tests, BrC EFabs of China 5 gasoline direct injection vehicle is the highest, while China 6 mixing fuel injection vehicle exhibits the lowest EFabs. The BrC EFabs of on-road vehicle fleet at 370 nm wavelength are 0.081 +/- 0.0058 m(2) kg(-1) for mixed fleet, 0.074 +/- 0.018 m(2) kg(-1) for gasoline vehicles (GVs), and 1.66 +/- 0.71 m(2) kg(-1) for diesel vehicles (DVs) in the tunnel measurement. EFabs of GV fleet in the road tunnel is higher than China 5 and China 6 vehicles, as China 1-4 vehicles accounted for 26.8% of the total vehicle fleet in the tunnel. EFabs of vehicular BrC are lower than those from biomass burning and coal combustion emissions. The light absorption of BrC from GVs and DVs accounts for 7.2 +/- 2.1% and 1.5 +/- 0.77% of total traffic-related absorption at 370 nm, respectively. Our study provides optical features of BrC from vehicle source and could contribute to estimating the impacts of vehicular aerosol emissions on global and regional climate change.
引用
收藏
页数:10
相关论文
共 73 条
[1]   Black carbon or brown carbon?: The nature of light-absorbing carbonaceous aerosols [J].
Andreae, M. O. ;
Gelencser, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2006, 6 :3131-3148
[2]   Water/Methanol-Insoluble Brown Carbon Can Dominate Aerosol-Enhanced Light Absorption in Port Cities [J].
Bai, Zhe ;
Zhang, Linyuan ;
Cheng, Yi ;
Zhang, Wei ;
Mao, Junfang ;
Chen, Hui ;
Li, Ling ;
Wang, Lina ;
Chen, Jianmin .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (23) :14889-14898
[3]   Black Carbon Emissions in Gasoline Exhaust and a Reduction Alternative with a Gasoline Particulate Filter [J].
Chan, Tak W. ;
Meloche, Eric ;
Kubsh, Joseph ;
Brezny, Rasto .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (10) :6027-6034
[4]   Using a chassis dynamometer to determine the influencing factors for the emissions of Euro VI vehicles [J].
Chen, Lin ;
Wang, Zhong ;
Liu, Shuai ;
Qu, Lei .
TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, 2018, 65 :564-573
[5]   Characterizing particulate matter emissions from GDI and PFI vehicles under transient and cold start conditions [J].
Chen, Longfei ;
Liang, Zhirong ;
Zhang, Xin ;
Shuai, Shijin .
FUEL, 2017, 189 :131-140
[6]   Investigating the dependence of light-absorption properties of combustion carbonaceous aerosols on combustion conditions [J].
Cheng, Zezhen ;
Atwi, Khairallah ;
Onyima, Travis ;
Saleh, Rawad .
AEROSOL SCIENCE AND TECHNOLOGY, 2019, 53 (04) :419-434
[7]   Aerosol and trace gas vehicle emission factors measured in a tunnel using an Aerosol Mass Spectrometer and other on-line instrumentation [J].
Chirico, Roberto ;
Prevot, Andre S. H. ;
DeCarlo, Peter F. ;
Heringa, Maarten F. ;
Richter, Rene ;
Weingartner, Ernest ;
Baltensperger, Urs .
ATMOSPHERIC ENVIRONMENT, 2011, 45 (13) :2182-2192
[8]   Spatio-temporal variability and principal components of the particle number size distribution in an urban atmosphere [J].
Costabile, F. ;
Birmili, W. ;
Klose, S. ;
Tuch, T. ;
Wehner, B. ;
Wiedensohler, A. ;
Franck, U. ;
Koenig, K. ;
Sonntag, A. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (09) :3163-3195
[9]   The "dual-spot" Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation [J].
Drinovec, L. ;
Mocnik, G. ;
Zotter, P. ;
Prevot, A. S. H. ;
Ruckstuhl, C. ;
Coz, E. ;
Rupakheti, M. ;
Sciare, J. ;
Mueller, T. ;
Wiedensohler, A. ;
Hansen, A. D. A. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (05) :1965-1979
[10]   Modeling radiative and climatic effects of brown carbon aerosols with the ARPEGE-Climat global climate model [J].
Druge, Thomas ;
Nabat, Pierre ;
Mallet, Marc ;
Michou, Martine ;
Remy, Samuel ;
Dubovik, Oleg .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2022, 22 (18) :12167-12205