A CRISPR way for accelerating cereal crop improvement: Progress and challenges

被引:16
|
作者
Basu, Umer [1 ]
Ahmed, Syed Riaz [2 ,3 ]
Bhat, Basharat Ahmad [4 ]
Anwar, Zunaira [2 ,3 ]
Ali, Ahmad [5 ]
Ijaz, Aqsa [2 ,3 ]
Gulzar, Addafar [6 ]
Bibi, Amir [7 ]
Tyagi, Anshika [8 ]
Nebapure, Suresh M. M. [1 ]
Goud, Chengeshpur Anjali [9 ]
Ahanger, Shafat Ahmad [6 ]
Ali, Sajad [8 ]
Mushtaq, Muntazir [10 ]
机构
[1] Indian Agr Res Inst, ICAR, Div Entomol, New Delhi, India
[2] Pakistan Inst Engn & Appl Sci NIAB C, Nucl Inst Agr, PIEAS, Faisalabad, Pakistan
[3] Pakistan Inst Engn & Appl Sci NIAB C, PIEAS, Biol Coll, Faisalabad, Pakistan
[4] Univ Kashmir, Dept Bioresources, Srinagar, India
[5] Huazhong Agr Univ, Coll Plant Sci & Technol, Natl Key Lab Crop Genet Improvement, Wuhan, Peoples R China
[6] Sher Ekashmir Univ Agr Sci & Technol Kashmir, Fac Agr, Div Plant Pathol, Sopore, India
[7] Univ Agr Faisalabad, Fac Agr Sci, Dept Plant Breeding & Genet, Faisalabad, Pakistan
[8] Yeungnam Univ, Dept Biotechnol, Gyongsan, South Korea
[9] Prof Jayashanker Telangana State Agr Univ, Inst Biotechnol, Hyderabad, India
[10] Natl Bur Plant Genet Resources, ICAR, Div Germplasm Evaluat, Pusa Campus, New Delhi, India
关键词
CRISPR/Cas; cereals; food security; genome editing; crop improvement; TALENs; base editing; prime editing; ZINC-FINGER NUCLEASES; TARGETED MUTAGENESIS; GENOME MODIFICATION; GENE; RICE; DNA; BASE; TALEN; DEAMINASE; EFFICIENCY;
D O I
10.3389/fgene.2022.866976
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Humans rely heavily on cereal grains as a key source of nutrients, hence regular improvement of cereal crops is essential for ensuring food security. The current food crisis at the global level is due to the rising population and harsh climatic conditions which prompts scientists to develop smart resilient cereal crops to attain food security. Cereal crop improvement in the past generally depended on imprecise methods like random mutagenesis and conventional genetic recombination which results in high off targeting risks. In this context, we have witnessed the application of targeted mutagenesis using versatile CRISPR-Cas systems for cereal crop improvement in sustainable agriculture. Accelerated crop improvement using molecular breeding methods based on CRISPR-Cas genome editing (GE) is an unprecedented tool for plant biotechnology and agriculture. The last decade has shown the fidelity, accuracy, low levels of off-target effects, and the high efficacy of CRISPR technology to induce targeted mutagenesis for the improvement of cereal crops such as wheat, rice, maize, barley, and millets. Since the genomic databases of these cereal crops are available, several modifications using GE technologies have been performed to attain desirable results. This review provides a brief overview of GE technologies and includes an elaborate account of the mechanisms and applications of CRISPR-Cas editing systems to induce targeted mutagenesis in cereal crops for improving the desired traits. Further, we describe recent developments in CRISPR-Cas-based targeted mutagenesis through base editing and prime editing to develop resilient cereal crop plants, possibly providing new dimensions in the field of cereal crop genome editing.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] CRISPR/Cas systems: opportunities and challenges for crop breeding
    Biswas, Sukumar
    Zhang, Dabing
    Shi, Jianxin
    PLANT CELL REPORTS, 2021, 40 (06) : 979 - 998
  • [2] Potential of advanced genome editing tools in plant biotechnology and crop improvement: progress and challenges
    Ben-Amar, Anis
    PLANT CELL TISSUE AND ORGAN CULTURE, 2024, 158 (01)
  • [3] The recent progress of CRISPR/Cas genome editing technology and its application in crop improvement
    Lai, Zhengshiyu
    Huang, Zantang
    Sun, Jieting
    Jing, Xuejiao
    Xiang, Lei
    Zhao, Haiming
    Mo, Cehui
    Hou, Xuewen
    CHINESE SCIENCE BULLETIN-CHINESE, 2022, 67 (17): : 1923 - 1937
  • [4] A CRISPR way for accelerating improvement of food crops
    Zhang, Yi
    Pribil, Mathias
    Palmgren, Michael
    Gao, Caixia
    NATURE FOOD, 2020, 1 (04): : 200 - 205
  • [5] CRISPR/Cas: A powerful tool for gene function study and crop improvement
    Zhang, Dangquan
    Zhang, Zhiyong
    Unver, Turgay
    Zhang, Baohong
    JOURNAL OF ADVANCED RESEARCH, 2021, 29 : 207 - 221
  • [6] CRISPR-Based Crop Improvements: A Way Forward to Achieve Zero Hunger
    Ahmad, Shakeel
    Tang, Liqun
    Shahzad, Rahil
    Mawia, Amos Musyoki
    Rao, Gundra Sivakrishna
    Jamil, Shakra
    Wei, Chen
    Sheng, Zhonghua
    Shao, Gaoneng
    Wei, Xiangjin
    Hu, Peisong
    Mahfouz, Magdy M.
    Hu, Shikai
    Tang, Shaoqing
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2021, 69 (30) : 8307 - 8323
  • [7] Recent advancements in CRISPR/Cas technology for accelerated crop improvement
    Debajit Das
    Dhanawantari L. Singha
    Ricky Raj Paswan
    Naimisha Chowdhury
    Monica Sharma
    Palakolanu Sudhakar Reddy
    Channakeshavaiah Chikkaputtaiah
    Planta, 2022, 255
  • [8] Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance
    Maharajan, Theivanayagam
    Krishna, T. P. Ajeesh
    Rakkammal, Kasinathan
    Ceasar, Stanislaus Antony
    Ramesh, Manikandan
    PLANTA, 2022, 256 (06)
  • [9] Application of CRISPR/Cas system in cereal improvement for biotic and abiotic stress tolerance
    Theivanayagam Maharajan
    T. P. Ajeesh Krishna
    Kasinathan Rakkammal
    Stanislaus Antony Ceasar
    Manikandan Ramesh
    Planta, 2022, 256
  • [10] CRISPR/Cas-mediated genome editing in sorghum - recent progress, challenges and prospects
    Parikh, Aalap
    Brant, Eleanor J.
    Baloglu, Mehmet Cengiz
    Altpeter, Fredy
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-PLANT, 2021, 57 (04) : 720 - 730