Photocatalytic hydrogen generation from overall water splitting with direct Z-scheme driven by two-dimensional InTe/Bismuthene heterostructure

被引:30
|
作者
Ge, Meng [1 ]
Yang, Chuan-Lu [1 ]
Wang, Mei-Shan [1 ]
Ma, Xiao-Guang [1 ]
机构
[1] Ludong Univ, Sch Phys & Optoelect Engn, Yantai 264025, Peoples R China
基金
中国国家自然科学基金;
关键词
Heterostructure; Hydrogen evolution reaction; Z-scheme; Built-in electric field; Photocatalytic; TOTAL-ENERGY CALCULATIONS; DYNAMICS; HETEROJUNCTION; SEMICONDUCTORS; TEMPERATURE; EVOLUTION; BISMUTH; PHASE; STATE;
D O I
10.1016/j.ijhydene.2022.09.249
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The photocatalytic direct Z-scheme driven by two-dimensional (2D) heterostructure often achieve high solar-to-hydrogen conversion efficiency (hSTH). However, the favorable 2D heterostructure is not easily identified. Here, we identify a 2D heterostructure with InTe and Bismuthene monolayers and confirm the most stable configurations. The band alignments and built-in electric fields both turn out to satisfy the requirement of the direct Z-scheme for hydrogen evolution reaction. In addition, the optical absorption, mobility, hSTH and the change in Gibbs free energy is used to justify the photocatalytic performance. The maximum hSTH can reach 9.67% which is significantly higher than 4.22% of the InTe monolayer. Moreover, the hSTH of the heterostructure can be raised to 16.17% under +9% biaxial strains, indicating that strains have a controlling effect on the hSTHs. The alterations in Gibbs free energies of 1.72-2.12 eV assure the hydrogen evolution reactions are feasible in thermodynamics. Therefore, the present InTe/Bismuthene heterostructure has potential applications in driving photocatalytic hydrogen generation from overall water splitting under the irradiation of sunlight.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:138 / 146
页数:9
相关论文
共 50 条
  • [1] Two-dimensional MoSeO/BP heterostructure for superior Z-scheme photocatalytic water splitting
    Wan, Changxin
    Shi, Tianlong
    Yan, Wei
    Li, Heng
    Liu, Chunsheng
    Meng, Lan
    Yan, Xiaohong
    SURFACE SCIENCE, 2024, 749
  • [2] DFT investigation on two-dimensional GeS/WS2 van der Waals heterostructure for direct Z-scheme photocatalytic overall water splitting
    Ju, Lin
    Dai, Ying
    Wei, Wei
    Li, Mengmeng
    Huang, Baibiao
    APPLIED SURFACE SCIENCE, 2018, 434 : 365 - 374
  • [3] First-principles study on two-dimensional direct Z-scheme g-GeC/MoSe2 heterostructure for overall photocatalytic water splitting
    Zhang, Yuxi
    Wang, Peng
    Li, Fangfang
    Cai, Yiliang
    COMPUTATIONAL MATERIALS SCIENCE, 2025, 246
  • [4] Two-dimensional Janus heterostructures for superior Z-scheme photocatalytic water splitting
    Li, Zhuwei
    Hou, Jungang
    Zhang, Bo
    Cao, Shuyan
    Wu, Yunzhen
    Gao, Zhanming
    Nie, Xiaowa
    Sun, Licheng
    NANO ENERGY, 2019, 59 : 537 - 544
  • [5] Hydrogen generation from direct Z-scheme for photocatalytic overall water splitting with the SiSe/SnSe2 and SiSe/SnSSe heterostructures
    Wang, Fei
    Yang, Chuan-Lu
    Li, Xiao-Hu
    Liu, Yu-Liang
    Zhao, Wen-Kai
    JOURNAL OF CATALYSIS, 2024, 432
  • [6] Two-Dimensional AlN/PtSSe Heterojunction as A Direct Z-Scheme Photocatalyst for Overall Water Splitting: A DFT Study
    Liu, Yaozhong
    Yao, Yongsheng
    Liang, Zheng
    Gong, Zeting
    Li, Junyao
    Tang, Zhenkun
    Wei, Xiaolin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2024, 128 (24): : 9894 - 9903
  • [7] Two-dimensional AuSe/SnSe heterostructure for solar photocatalytic hydrogen evolution reaction with Z-scheme
    Yin, Qi-Kang
    Yang, Chuan-Lu
    Wang, Mei-Shan
    Ma, Xiao-Guang
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2022, 247
  • [8] Two-dimensional van der Waals nanocomposites as Z-scheme type photocatalysts for hydrogen production from overall water splitting
    Fu, Cen-Feng
    Luo, Qiquan
    Li, Xingxing
    Yang, Jinlong
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (48) : 18892 - 18898
  • [9] Two-dimensional C3N/WS2 vdW heterojunction for direct Z-scheme photocatalytic overall water splitting
    Li, Haotian
    Xu, Liang
    Huang, Xin
    Ou-Yang, Jie
    Chen, Min
    Zhang, Ying
    Tang, Shuaihao
    Dong, Kejun
    Wang, Ling-Ling
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (06) : 2186 - 2199
  • [10] Two-Dimensional Ti2CO2/CrSSe Heterostructure as a Direct Z-Scheme Photocatalyst for Water Splitting
    Cao, Jiameng
    Zhang, Xianbin
    Zhao, Shihan
    Ma, Haohao
    Lu, Xiaoyue
    CATALYSIS LETTERS, 2022, 152 (09) : 2564 - 2574