Thermally Driven Point Defect Transformation in Antimony Selenosulfide Photovoltaic Materials

被引:28
作者
Che, Bo [1 ,2 ]
Cai, Zhiyuan [1 ,2 ]
Xiao, Peng [1 ,2 ]
Li, Gang [1 ,2 ]
Huang, Yuqian [1 ,2 ]
Tang, Rongfeng [1 ,2 ]
Zhu, Changfei [1 ,2 ]
Yang, Shangfeng [1 ,2 ]
Chen, Tao [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Res Ctr Phys Sci Microscale, Sch Chem & Mat Sci, CAS Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[2] Hefei Comprehens Natl Sci Ctr, Inst Energy, Hefei 230000, Peoples R China
基金
中国国家自然科学基金;
关键词
antimony selenosulfide; point defects; Sb-2(S; Se)(3); solar cells; thin films; SOLAR-CELLS;
D O I
10.1002/adma.202208564
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermal treatment of inorganic thin films is a general and necessary step to facilitate crystallization and, in particular, to regulate the formation of point defects. Understanding the dependence of the defect formation mechanism on the annealing process is a critical challenge in terms of designing material synthesis approaches for obtaining desired optoelectronic properties. Herein, a mechanistic understanding of the evolution of defects in emerging Sb-2(S,Se)(3) solar cell films is presented. A top-efficiency Sb-2(S,Se)(3) solar-cell film is adopted in this study to consolidate this investigation. This study reveals that, under hydrothermal conditions, the as-deposited Sb-2(S,Se)(3) film generates defects with a high formation energy, demonstrating kinetically favorable defect formation characteristics. Annealing at elevated temperatures leads to a two-step defect transformation process: 1) formation of sulfur and selenium vacancy defects, followed by 2) migration of antimony ions to fill the vacancy defects. This process finally results in the generation of cation-anion antisite defects, which exhibit low formation energy, suggesting a thermodynamically favorable defect formation feature. This study establishes a new strategy for the fundamental investigation of the evolution of deep-level defects in metal chalcogenide films and provides guidance for designing material synthesis strategies in terms of defect control.
引用
收藏
页数:8
相关论文
共 37 条
[1]   Rate limiting interfacial hole transfer in Sb2S3 solid-state solar cells [J].
Christians, Jeffrey A. ;
Leighton, David T., Jr. ;
Kamat, Prashant V. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (03) :1148-1158
[2]   Trap and Transfer. Two-Step Hole Injection Across the Sb2S3/CuSCN Interface in Solid-State Solar Cells [J].
Christians, Jeffrey A. ;
Kamat, Prashant V. .
ACS NANO, 2013, 7 (09) :7967-7974
[3]   Sb2Se3 Thin-Film Solar Cells Exceeding 10% Power Conversion Efficiency Enabled by Injection Vapor Deposition Technology [J].
Duan, Zhaoteng ;
Liang, Xiaoyang ;
Feng, Yang ;
Ma, Haiya ;
Liang, Baolai ;
Wang, Ying ;
Luo, Shiping ;
Wang, Shufang ;
Schropp, Ruud E. I. ;
Mai, Yaohua ;
Li, Zhiqiang .
ADVANCED MATERIALS, 2022, 34 (30)
[4]   Defect passivation strategies in perovskites for an enhanced photovoltaic performance [J].
Fu, Lin ;
Li, Hui ;
Wang, Lian ;
Yin, Ruiyang ;
Li, Bo ;
Yin, Longwei .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (11) :4017-4056
[5]   ELECTRON-HOLE RECOMBINATION IN GERMANIUM [J].
HALL, RN .
PHYSICAL REVIEW, 1952, 87 (02) :387-387
[6]   Quasi-one-dimensional Sb2(S,Se)3 alloys as bandgap-tunable and defect-tolerant photocatalytic semiconductors [J].
Huang, Menglin ;
Cai, Zenghua ;
Chen, Shiyou .
JOURNAL OF CHEMICAL PHYSICS, 2020, 153 (01)
[7]   Complicated and Unconventional Defect Properties of the Quasi-One-Dimensional Photovoltaic Semiconductor Sb2Se3 [J].
Huang, Menglin ;
Xu, Peng ;
Han, Dan ;
Tang, Jiang ;
Chen, Shiyou .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (17) :15564-15572
[8]  
[Jiang Chenhui 江晨辉], 2020, [中国科学技术大学学报, Journal of University of Science and Technology of China], V50, P1383
[9]   9.7%-efficient Sb2(S,Se)3 solar cells with a dithieno[3,2-b: 2′,3′-d]pyrrole-cored hole transporting material [J].
Jiang, Chenhui ;
Zhou, Jie ;
Tang, Rongfeng ;
Lian, Weitao ;
Wang, Xiaomin ;
Lei, Xunyong ;
Zeng, Hualing ;
Zhu, Changfei ;
Tang, Weihua ;
Chen, Tao .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (01) :359-364
[10]   Controllable Solution-Phase Epitaxial Growth of Q1D Sb2(S,Se)3/CdS Heterojunction Solar Cell with 9.2% Efficiency [J].
Jin, Xin ;
Fang, Yanan ;
Salim, Teddy ;
Feng, Minjun ;
Yuan, Zhengtian ;
Hadke, Shreyash ;
Sum, Tze Chien ;
Wong, Lydia Helena .
ADVANCED MATERIALS, 2021, 33 (44)