A Support Vector Based Hybrid Forecasting Model for Chaotic Time Series: Spare Part Consumption Prediction

被引:6
|
作者
Sareminia, Saba [1 ,2 ]
机构
[1] Isfahan Univ Technol, Dept Ind & Syst Engn, Esfahan 8415683111, Iran
[2] Isfahan Univ Technol, Business Intelligence & Knowledge Management Res, Esfahan 8415683111, Iran
关键词
Chaotic time series; Spare part forecasting; Support vector machine; ARIMA; Three-layer feed-forward neural network; EXTREME LEARNING-MACHINE;
D O I
10.1007/s11063-022-10986-4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reliability of spare parts inventory in the company is one of the most significant challenges in the field of maintenance and repairs, but on the other hand, the liquidity crisis resulting from the purchase of surplus spare parts is another challenge facing the organizational financial field. Accordingly, accurate forecasting of future consumption is one of the most important solutions for inventory control systems. But because of the impact of so many variables on spare part consumption, most real-world data is chaotic. This leads to the use of classical methods to predict future demand, with high error and low reliability. In this research, a novel and reliable hybrid model based on the support vector machine (SVM), and two single algorithms (STL Decomposed ARIMA and three-layer feed-forward neural network) has been presented to predict the future consumption of spare parts. The proposed model (SVM-ARIMA-3LFFNN hybrid model) also experiments on several chaotic time series in the rapid miner repositories. The forecasting results indicate that the proposed hybrid model attains superior performance compared with a single model and can adapt to chaotic time series. Performance criteria considered in this study are MAE, RMSE, MAPE, and sMAPE. The results indicate that the proposed model can improve the RMSE, MAPE, and sMAPE (up to 30% improvement).
引用
收藏
页码:2825 / 2841
页数:17
相关论文
共 50 条
  • [21] Multi-parameter Prediction for Chaotic Time Series Based on Least Squares Support Vector Regression
    Ma Jiezhong
    Liu Yunchao
    Guo Yangming
    Zhao Xiaomin
    2013 32ND CHINESE CONTROL CONFERENCE (CCC), 2013, : 6139 - 6142
  • [22] A hybrid Forecasting Model of Discharges based on Support Vector Machine
    Li Shijin
    Jiang Lingling
    Zhu Yuelong
    Bo Ping
    2012 INTERNATIONAL CONFERENCE ON MODERN HYDRAULIC ENGINEERING, 2012, 28 : 136 - 141
  • [23] Prediction of chaotic time series based on fuzzy model
    Wang, HW
    Ma, GF
    ACTA PHYSICA SINICA, 2004, 53 (10) : 3293 - 3297
  • [24] Hybrid Model for Short-Term Water Demand Forecasting Based on Error Correction Using Chaotic Time Series
    Wu, Shan
    Han, Hongquan
    Hou, Benwei
    Diao, Kegong
    WATER, 2020, 12 (06)
  • [25] Chaotic time series forecasting using online least squares support vector machine regression
    Ye, MY
    Wang, XD
    Zhang, HR
    ACTA PHYSICA SINICA, 2005, 54 (06) : 2568 - 2573
  • [26] Time series forecasting based on wavelet KPCA and support vector machine
    Chen, Fei
    Han, Chongzhao
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 1487 - 1491
  • [27] Application of Least Square Support Vector Machine based on Particle Swarm Optimization to Chaotic Time Series Prediction
    Liu, Ping
    Yao, Jian
    2009 IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND INTELLIGENT SYSTEMS, PROCEEDINGS, VOL 4, 2009, : 458 - +
  • [28] Phase Space Prediction of Chaotic Time Series with Nu-Support Vector Machine Regression
    YE Mei-Ying~1 WANG Xiao-Dong~21 College of Mathematics and Physics
    CommunicationsinTheoreticalPhysics, 2005, 43 (01) : 102 - 106
  • [29] Combination kernel function least squares support vector machine for chaotic time series prediction
    Tian Zhong-Da
    Gao Xian-Wen
    Shi Tong
    ACTA PHYSICA SINICA, 2014, 63 (16)
  • [30] Phase space prediction of chaotic time series with Nu-support vector machine regression
    Ye, MY
    Wang, XD
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 43 (01) : 102 - 106