Glycosides of Buyang Huanwu decoction inhibits inflammation associated with cerebral ischemia-reperfusion via the PINK1/Parkin mitophagy pathway

被引:5
|
作者
Jiao, Keyan [1 ]
Lai, Zili [1 ]
Cheng, Qiaochu [1 ]
Yang, Zhengyu [1 ]
Liao, Wenxin [1 ]
Liao, Yanhao [1 ]
Long, Hongping [2 ]
Sun, Ruiting [1 ]
Lang, Ting [1 ]
Shao, Le [2 ]
Deng, Changqing [1 ]
She, Yan [1 ]
机构
[1] Hunan Univ Chinese Med, Changsha 410208, Peoples R China
[2] Hunan Univ Chinese Med, Hosp 1, Changsha 410208, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Inflammation; Buyang Huanwu decoction; PINK1/Parkin; Pyroptosis; Glycosides; Cerebral ischemia-reperfusion; INJURY;
D O I
10.1016/j.jep.2024.117766
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Ethnopharmacological relevance: A classic stroke formula is Buyang Huanwu Decoction (BYHWD), Glycosides are the pharmacological components found in BYHWD, which are utilized for the prevention and management of cerebral ischemia-reperfusion (CIR), as demonstrated in a previous study. Its neuroprotective properties are closely related to its ability to modulate inflammation, but its mechanism is as yet unclear. Aim of the study: A research was undertaken to investigate the impact of glycosides on the inflammation of CIR through the PTEN-induced putative kinase-1 (PINK1)/Parkin mitophagy pathway. Materials and methods: Analyzing glycosides containing serum components was performed with ultraperformance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS). Glycosides were applied to rat of Middle cerebral artery occlusion/reperfusion (MCAO/R) model and primary neural cell of Oxygen glucose deprivation/reperfusion (OGD/R) model. The neuroprotective effect and the regulation of mitophagy of glycosides were evaluated through neural damage and PINK1/Parkin mitophagy activation. Moreover, the assessment of the relationship between glycosides regulation of mitophagy and its antiinflammatory effects subsequent to mitophagy blockade was conducted by examining neural damage, PINK1/ Parkin mitophagy activation, and levels of pyroptosis. Results: (1) It was observed that the administration of glycosides resulted in a decrease in neurological function scores, a reduction in cerebral infarction volume, an increase in mitochondrial autophagosome, and the maintenance of a high expression status of light chain 3 (LC3) II/LC3I protein. Additionally, there was a significant inhibition of p62 protein expression and an enhancement of PINK1 and Parkin protein expression. Furthermore, it was found that the effect of glycosides at a dosage of 0.128 g center dot kg-1 was significantly superior to that of glycosides at a dosage of 0.064 g center dot kg-1. Notably, the neuroprotective effect and inhibition of pyroptosis protein of glycosides at a dosage of 0.128 g center dot kg-1 were attenuated when mitochondrial autophagy was blocked. (2) Glycosides repaired cellular morphological damage, enhanced cell survival, and reduced Lactate dehydrogenase (LDH) leakage, with glycosides (2.36 mu g center dot mL-1 and 4.72 mu g center dot mL-1) neuronal protection being the strongest. Glycosides (4.72 mu g center dot mL-1) maintained LC3II/LC3I protein high expression state, inhibited p62 protein expression, and promoted PINK1 and Parkin protein expression, which was stronger than glycosides (2.36 mu g center dot mL-1). The blockade of mitophagy resulted in a reduction of neuroprotection and inhibition of pyroptosis protein exerted by glycosides. Conclusion: Glycosides demonstrate the ability to hinder inflammation through the activation of the PINK1/ Parkin mitophagy pathway, thereby leading to subsequent neuroprotective effects on CIR.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] E3 ubiquitin ligase MARCH1 reduces inflammation and pyroptosis in cerebral ischemia-reperfusion injury via PCSK9 downregulation
    Guo, Hongmei
    Li, Wanli
    Yang, Zhigang
    Xing, Xiaobin
    MAMMALIAN GENOME, 2024, 35 (03) : 346 - 361
  • [42] Formononetin protects against inflammation associated with cerebral ischemia-reperfusion injury in rats by targeting the JAK2/STAT3 signaling pathway
    Yu, Li
    Zhang, Yangyang
    Chen, Qianqian
    He, Yu
    Zhou, Huifen
    Wan, Haitong
    Yang, Jiehong
    BIOMEDICINE & PHARMACOTHERAPY, 2022, 149
  • [43] Dexmedetomidine inhibits mitochondria damage and apoptosis of enteric glial cells in experimental intestinal ischemia/reperfusion injury via SIRT3-dependent PINK1/HDAC3/p53 pathway
    Zhang, Qin
    Liu, Xiao-Ming
    Hu, Qian
    Liu, Zheng-Ren
    Liu, Zhi-Yi
    Zhang, Huai-Gen
    Huang, Yuan-Lu
    Chen, Qiu-Hong
    Wang, Wen-Xiang
    Zhang, Xue-Kang
    JOURNAL OF TRANSLATIONAL MEDICINE, 2021, 19 (01)
  • [44] Neuroprotective effects of GPR68 against cerebral ischemia-reperfusion injury via the NF-κB/Hif-1α pathway
    Li, Xianglong
    Xia, Kaiguo
    Zhong, Chuanhong
    Chen, Xiangzhou
    Yang, Fubing
    Chen, Ligang
    You, Jian
    BRAIN RESEARCH BULLETIN, 2024, 216
  • [45] Vanillic acid attenuates H2O2-induced injury in H9c2 cells by regulating mitophagy via the PINK1/Parkin/Mfn2 signaling pathway
    Mei, Manxue
    Sun, Haoxiang
    Xu, Jiayu
    Li, Yimeng
    Chen, Guiling
    Yu, Qihua
    Deng, Changsheng
    Zhu, Wei
    Song, Jianping
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [46] TGN-020 Alleviate Inflammation and Apoptosis After Cerebral Ischemia-Reperfusion Injury in Mice Through Glymphatic and ERK1/2 Signaling Pathway
    Li, Xiaohong
    Xie, Zhuoxi
    Zhou, Qian
    Tan, Xiaoli
    Meng, Weiting
    Pang, Yeyu
    Huang, Lizhen
    Ding, Zhihao
    Hu, Yuanhong
    Li, Ruhua
    Huang, Guilan
    Li, Hao
    MOLECULAR NEUROBIOLOGY, 2024, 61 (02) : 1175 - 1186
  • [47] Rutaecarpine may improve neuronal injury, inhibits apoptosis, inflammation and oxidative stress by regulating the expression of ERK 1/2 and Nrf2/HO-1 pathway in rats with cerebral ischemia-reperfusion injury
    Han, Meiyu
    Hu, Lin
    Chen, Yang
    DRUG DESIGN DEVELOPMENT AND THERAPY, 2019, 13 : 2923 - 2931
  • [48] IL-17A deficiency alleviates cerebral ischemia-reperfusion injury via activating ERK/MAPK pathway in hippocampal CA1 region
    Li, Yanan
    Zhang, Qi
    Wang, Xupeng
    Xu, Fang
    Niu, Junfang
    Zhao, Juan
    Wang, Qiujun
    BRAIN RESEARCH BULLETIN, 2024, 208
  • [49] miR-155-5p accelerates cerebral ischemia-reperfusion inflammation injury and cell pyroptosis via DUSP14/TXNIP/NLRP3 pathway
    Shi, Yu
    Li, Zhendong
    Li, Ke
    Xu, Ke
    ACTA BIOCHIMICA POLONICA, 2022, 69 (04) : 781 - 787
  • [50] Ulinastatin affects focal cerebral ischemia-reperfusion injury via SOCS1-mediated JAK2/STAT3 signalling pathway
    Chen, Xiaoxi
    Li, Peng
    Huang, Renming
    Zhang, Juan
    Ouyang, Xingzhi
    Tan, Dianxiang
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2023, 50 (01) : 107 - 116