Leveraging machine learning models for peptide-protein interaction prediction

被引:8
|
作者
Yin, Song [1 ]
Mi, Xuenan [2 ]
Shukla, Diwakar [1 ,2 ,3 ]
机构
[1] Univ Illinois, Dept Chem & Biomol Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Ctr Biophys & Quantitat Biol, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Bioengn, Urbana, IL 61801 USA
来源
RSC CHEMICAL BIOLOGY | 2024年 / 5卷 / 05期
基金
美国国家卫生研究院;
关键词
SEQUENCE-BASED PREDICTION; AMINO-ACID; ACCURATE PREDICTION; SECONDARY STRUCTURE; DRUG DISCOVERY; BINDING-SITES; SH3; DOMAIN; HOT-SPOTS; RECOGNITION; DOCKING;
D O I
10.1039/d3cb00208j
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Peptides play a pivotal role in a wide range of biological activities through participating in up to 40% protein-protein interactions in cellular processes. They also demonstrate remarkable specificity and efficacy, making them promising candidates for drug development. However, predicting peptide-protein complexes by traditional computational approaches, such as docking and molecular dynamics simulations, still remains a challenge due to high computational cost, flexible nature of peptides, and limited structural information of peptide-protein complexes. In recent years, the surge of available biological data has given rise to the development of an increasing number of machine learning models for predicting peptide-protein interactions. These models offer efficient solutions to address the challenges associated with traditional computational approaches. Furthermore, they offer enhanced accuracy, robustness, and interpretability in their predictive outcomes. This review presents a comprehensive overview of machine learning and deep learning models that have emerged in recent years for the prediction of peptide-protein interactions. A timeline showcasing the progress of machine learning and deep learning methods for peptide-protein interaction predictions.
引用
收藏
页码:401 / 417
页数:17
相关论文
共 50 条
  • [31] Protein structure prediction (RMSD ≤ 5 Å) using machine learning models
    Pathak, Yadunath
    Rana, Prashant Singh
    Singh, P. K.
    Saraswat, Mukesh
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 14 (01) : 71 - 85
  • [32] Classification and prediction of protein-protein interaction interface using machine learning algorithm
    Das, Subhrangshu
    Chakrabarti, Saikat
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [33] Protein-Protein Interaction Affinity Prediction Based on Interface Descriptors and Machine Learning
    Li, Xue-Ling
    Zhu, Min
    Li, Xiao-Lai
    Wang, Hong-Qiang
    Wang, Shulin
    INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, ICIC 2012, 2012, 7390 : 205 - 212
  • [34] InterPep2: global peptide-protein docking using interaction surface templates
    Johansson-Akhe, Isak
    Mirabello, Claudio
    Wallner, Bjoern
    BIOINFORMATICS, 2020, 36 (08) : 2458 - 2465
  • [35] Fully Blind Peptide-Protein Docking with pepATTRACT
    Schindler, Christina E. M.
    de Vries, Sjoerd J.
    Zacharias, Martin
    STRUCTURE, 2015, 23 (08) : 1507 - 1515
  • [36] Genetically Encoded Peptide-protein Reactive Pairs
    Fang, Jing
    Zhang, Wen-bin
    ACTA POLYMERICA SINICA, 2018, (04): : 429 - 444
  • [37] Harnessing protein folding neural networks for peptide-protein docking
    Tsaban, Tomer
    Varga, Julia K.
    Avraham, Orly
    Ben-Aharon, Ziv
    Khramushin, Alisa
    Schueler-Furman, Ora
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [38] Machine learning study for the prediction of transdermal peptide
    Eunkyoung Jung
    Seung-Hoon Choi
    Nam Kyung Lee
    Sang-Kee Kang
    Yun-Jaie Choi
    Jae-Min Shin
    Kihang Choi
    Dong Hyun Jung
    Journal of Computer-Aided Molecular Design, 2011, 25 : 339 - 347
  • [39] Machine learning study for the prediction of transdermal peptide
    Jung, Eunkyoung
    Choi, Seung-Hoon
    Lee, Nam Kyung
    Kang, Sang-Kee
    Choi, Yun-Jaie
    Shin, Jae-Min
    Choi, Kihang
    Jung, Dong Hyun
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2011, 25 (04) : 339 - 347
  • [40] Leveraging protein language models for robust antimicrobial peptide detection
    Zhang, Lichao
    Xiong, Shuwen
    Xu, Lei
    Liang, Junwei
    Zhao, Xuehua
    Zhang, Honglai
    Tan, Xu
    METHODS, 2025, 238 : 19 - 26