Robust extrinsic symmetry estimation in 3D point clouds

被引:0
|
作者
Nagar, Rajendra [1 ]
机构
[1] Indian Inst Technol Jodhpur, Dept Elect Engn, Jodhpur 342030, Rajasthan, India
来源
VISUAL COMPUTER | 2025年 / 41卷 / 01期
关键词
Reflection symmetry; Point clouds; Statistical estimation; Optimization; Heat kernel signatures; SHAPE; OPTIMIZATION;
D O I
10.1007/s00371-024-03313-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Detecting the reflection symmetry plane of an object represented by a 3D point cloud is a fundamental problem in 3D computer vision and geometry processing due to its various applications, such as compression, object detection, robotic grasping, 3D surface reconstruction, etc. Several approaches exist to solve this problem for clean 3D point clouds. However, it is a challenging problem to solve in the presence of outliers and missing parts. The existing methods try to overcome this challenge primarily by voting-based techniques but do not work efficiently. In this work, we proposed a statistical estimator-based approach for the plane of reflection symmetry that is robust to outliers and missing parts. We pose the problem of finding the optimal estimator for the reflection symmetry as an optimization problem on a 2-sphere that quickly converges to the global solution for an approximate initialization. We further adapt the heat kernel signature for symmetry invariant matching of mirror symmetric points. This approach helps us to decouple the chicken-and-egg problem of finding the optimal symmetry plane and correspondences between the reflective symmetric points. The proposed approach achieves comparable mean ground-truth error and 4.5% increment in the F-score as compared to the state-of-the-art approaches on the benchmark dataset.
引用
收藏
页码:115 / 128
页数:14
相关论文
共 50 条
  • [41] Object Classification Based on 3D Point Clouds Covariance Descriptor
    Zhang, Heng
    Zhuang, Bin
    Liu, Yanli
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE) AND IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC), VOL 2, 2017, : 234 - 237
  • [42] Weakly Supervised 3D Object Detection from Point Clouds
    Qin, Zengyi
    Wang, Jinglu
    Lu, Yan
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 4144 - 4152
  • [43] Machining tool identification utilizing temporal 3D point clouds
    Zoumpekas, Thanasis
    Leutgeb, Alexander
    Puig, Anna
    Salamo, Maria
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (03) : 1221 - 1232
  • [44] Automatic Generation of 3D Building Models from Point Clouds
    Hron, Vojtech
    Halounova, Lena
    GEOINFORMATICS FOR INTELLIGENT TRANSPORTATION, 2015, : 109 - 119
  • [45] A Registration Method for 3D Point Clouds with Convolutional Neural Network
    Ai, Shangyou
    Jia, Lei
    Zhuang, Chungang
    Ding, Han
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2017, PT III, 2017, 10464 : 377 - 387
  • [46] LassoNet: Deep Lasso-Selection of 3D Point Clouds
    Chen, Zhutian
    Zeng, Wei
    Yang, Zhiguang
    Yu, Lingyun
    Fu, Chi-Wing
    Qu, Huamin
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (01) : 195 - 204
  • [47] Edge Detection in 3D Point Clouds Using Digital Images
    Dolapsaki, Maria Melina
    Georgopoulos, Andreas
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (04)
  • [48] OctFormer: Octree-based Transformers for 3D Point Clouds
    Wang, Peng-Shuai
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (04):
  • [49] 3D Shape Analysis for Point Clouds Using Variational Geometric
    Jin, Longcun
    2015 11TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2015, : 915 - 918
  • [50] 3D Object Detection on Synthetic Point Clouds for Railway Applications
    Neri, Michael
    Battisti, Federica
    2022 10TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING (EUVIP), 2022,