The impact of soil layering and groundwater flow on energy pile thermal performance

被引:14
作者
Alqawasmeh, Qusi I. [1 ]
Narsilio, Guillermo A. [1 ]
Makasis, Nikolas [1 ,2 ,3 ]
Kreitmair, Monika J. [2 ,3 ]
机构
[1] Univ Melbourne, Dept Infrastruct Engn, Engn Block B 205, Parkville, Vic 3010, Australia
[2] Univ Surrey, Sch Sustainabil Civil & Environm Engn, Guildford GU2 7XH, Surrey, England
[3] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
关键词
Shallow geothermal energy; Ground layering; Groundwater flow; Energy piles; Thermal conductivity; BOREHOLE HEAT-EXCHANGER; GEOTHERMAL-ENERGY; ANALYTICAL-MODEL; PUMP SYSTEMS; BEHAVIOR; DESIGN; SUBSURFACE; PARAMETERS;
D O I
10.1016/j.gete.2024.100538
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Shallow geothermal energy pile systems have emerged as cost-effective and low-carbon alternatives for heating and cooling buildings, compared to traditional air-conditioning systems. Geothermal applications have been researched extensively in recent years under the assumption of ground homogeneity, and the effect of ground stratification remains mostly unexplored. To investigate this, a 3D finite element numerical model is developed and validated against laboratory-scale experimental data, to study the transient diffusion-convection heat transfer linked with Darcy groundwater flow around energy piles in multi-layered lithology. The model is used to undertake long-term assessments under balanced and unbalanced thermal loads to evaluate the thermal effects of soil layering and discrepancies against commonly assumed equivalent homogeneous stratum, for soil profiles with different thermal conductivity distributions. The groundwater flow effect at various depths and seepage velocities on the thermal performance of the energy pile is investigated as well. Results demonstrate the need to account for the spatial variability in thermal properties, particularly for unbalanced thermal loading scenarios. The thermal yield can be underestimated by up to 19.6 % due to an inaccuracy of 48.2 % in the accumulated temperature after 25-year of operation with respect to an equivalent homogeneous ground with depth-weighted average thermal conductivity. This discrepancy grows as the contrast between layers increases. An empirical derived formula is presented and tested, presenting a correction to the effective thermal conductivity of the layered systems in this study that considers the thermal contribution of the ground beneath the pile. Groundwater seepage is shown to have a positive impact on the heat exchanger efficiency, and in the layered geology the efficiency under-estimation becomes more critical at low to moderate Darcy velocities, if neglected or inaccurately measured. These findings contribute to a broader understanding of energy piles and can assist engineers and practitioners in optimising energy geo-structure design, boosting the technology's viability.
引用
收藏
页数:19
相关论文
共 73 条
[1]   Behaviour of energy piles under climate-change scenarios: a case study in Southern Italy [J].
Adinolfi, Marianna ;
Rianna, Guido ;
Mercogliano, Paola ;
Maiorano, Rosa Maria Stefania ;
Aversa, Stefano .
ENVIRONMENTAL GEOTECHNICS, 2021, 8 (08) :571-585
[2]   Comparing heat flow models for interpretation of precast quadratic pile heat exchanger thermal response tests [J].
Alberdi-Pagola, Maria ;
Poulsen, Soren Erbs ;
Loveridge, Fleur ;
Madsen, Soren ;
Jensen, Rasmus Lund .
ENERGY, 2018, 145 :721-733
[3]  
Amis A., 2014, Rehva Journal, V3, P2
[4]   Extraction of thermal characteristics of surrounding geological layers of a geothermal heat exchanger by 3D numerical simulations [J].
Aranzabal, N. ;
Martos, J. ;
Montero, A. ;
Monreal, L. ;
Soret, J. ;
Torres, J. ;
Garcia-Olcina, R. .
APPLIED THERMAL ENGINEERING, 2016, 99 :92-102
[5]   Novel instruments and methods to estimate depth-specific thermal properties in borehole heat exchangers [J].
Aranzabal, Nordin ;
Martos, Julio ;
Stokuca, Milan ;
Pallard, Willem Mazzotti ;
Acuna, Jose ;
Soret, Jesus ;
Blum, Philipp .
GEOTHERMICS, 2020, 86
[6]   Novel Instrument for Temperature Measurements in Borehole Heat Exchangers [J].
Aranzabal, Nordin ;
Martos, Julio ;
Steger, Hagen ;
Blum, Philipp ;
Soret, Jesus .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2019, 68 (04) :1062-1070
[7]  
Banks D., 2012, An Introduction to Thermogeology: Ground Source Heating and Cooling, Vsecond
[8]  
Bidarmaghz A., 2015, THESIS U MELBOURNE
[9]   Heat exchange mechanisms in energy tunnel systems [J].
Bidarmaghz, Asal ;
Narsilio, Guillermo A. .
GEOMECHANICS FOR ENERGY AND THE ENVIRONMENT, 2018, 16 :83-95
[10]   Analysis and design methods for energy geostructures [J].
Bourne-Webb, Peter ;
Burlon, Sebastien ;
Javed, Saqib ;
Kuerten, Sylvia ;
Loveridge, Fleur .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 65 :402-419