Straddling SnSe2/SnS2 van der Waals tunneling heterostructures for high performance broadband photodetectors

被引:7
作者
Cong, Xiangna [1 ]
Shah, Muhammad Najeeb Ullah [2 ]
He, Wenlong [1 ]
机构
[1] Shenzhen Univ, Coll Phys & Optoelect Engn, Key Lab Optoelect Devices & Syst, Minist Educ & Guangdong Prov, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Inst Microscale Optoelect, Int Collaborat Lab 2D Mat Optoelect Sci & Technol, Minist Educ, Shenzhen 518060, Peoples R China
关键词
TOTAL-ENERGY CALCULATIONS; OPTICAL-PROPERTIES; RAMAN-SCATTERING; EFFICIENCY; EMISSION; DYNAMICS; SNS2;
D O I
10.1039/d4tc00443d
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Layered van der Waals 2D materials possess remarkable light-matter interaction properties and offer a broad range of tunable bandgaps through the facile fabrication of heterostructures, which have opened up numerous possibilities for applications in the field of optoelectronics. Previous research has indicated that type-I van der Waals heterostructures hold significant promise for photodetector applications. Nevertheless, the underlying tunneling mechanisms within type-I heterostructures have not been fully elucidated. In this study, a highly efficient photodiode based on a SnSe2/SnS2 type-I van der Waals heterostructure is successfully fabricated, which is further validated through density functional theory calculations that explored the interlayer band structure under the influence of electric fields. A unilateral depletion region is formed on SnS2, which effectively suppressed carrier recombination at the interface. The device exhibits an ultrahigh on/off ratio of approximately 10(7), primarily attributed to the depletion effect of SnS2 and the improved interface effect of h-BN. Additionally, the device demonstrates a remarkably high responsivity of 37.5 A W-1 and broadband detection width from ultraviolet to visible spectrum. These unique characteristics suggest that our findings could pave the way for the development of next-generation, highly efficient optoelectronic devices.
引用
收藏
页码:5411 / 5419
页数:9
相关论文
共 68 条
[1]   Strong Interlayer Transition in Few-Layer InSe/PdSe2 van der Waals Heterostructure for Near-Infrared Photodetection [J].
Ahmad, Waqas ;
Liu, Jidong ;
Jiang, Jizhou ;
Hao, Qiaoyan ;
Wu, Di ;
Ke, Yuxuan ;
Gan, Haibo ;
Laxmi, Vijay ;
Ouyang, Zhengbiao ;
Ouyang, Fangping ;
Wang, Zhuo ;
Liu, Fei ;
Qi, Dianyu ;
Zhang, Wenjing .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (43)
[2]   Light Absorption and Emission Dominated by Trions in the Type-I van der Waals Heterostructures [J].
Bae, Hyemin ;
Kim, Suk Hyun ;
Lee, Seungmin ;
Noh, Minji ;
Karni, Ouri ;
O'Beirne, Aidan L. ;
Barre, Elyse ;
Sim, Sangwan ;
Cha, Soonyoung ;
Jo, Moon-Ho ;
Heinz, Tony F. ;
Choi, Hyunyong .
ACS PHOTONICS, 2021, 8 (07) :1972-1978
[3]   Type-I van der Waals heterostructure formed by MoS2 and ReS2 monolayers [J].
Bellus, Matthew Z. ;
Li, Ming ;
Lane, Samuel D. ;
Ceballos, Frank ;
Cui, Qiannan ;
Zeng, Xiao Cheng ;
Zhao, Hui .
NANOSCALE HORIZONS, 2017, 2 (01) :31-36
[4]   Exciton pumping across type-I gallium chalcogenide heterojunctions [J].
Cai, Hui ;
Kang, Jun ;
Sahin, Hasan ;
Chen, Bin ;
Suslu, Aslihan ;
Wu, Kedi ;
Peeters, Francois ;
Meng, Xiuqing ;
Tongay, Sefaattin .
NANOTECHNOLOGY, 2016, 27 (06)
[5]   Van der Waals heterostructures [J].
Castellanos-Gomez, Andres ;
Duan, Xiangfeng ;
Fei, Zhe ;
Gutierrez, Humberto Rodriguez ;
Huang, Yuan ;
Huang, Xinyu ;
Quereda, Jorge ;
Qian, Qi ;
Sutter, Eli ;
Sutter, Peter .
NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01)
[6]   Chemical synthesis of two-dimensional atomic crystals, heterostructures and superlattices [J].
Chen, Peng ;
Zhang, Zhengwei ;
Duan, Xidong ;
Duan, Xiangfeng .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (09) :3129-3151
[7]   Efficient computational design of two-dimensional van der Waals heterostructures: Band alignment, lattice mismatch, and machine learning [J].
Choudhary, Kamal ;
Garrity, Kevin F. ;
Hartman, Steven T. ;
Pilania, Ghanshyam ;
Tavazza, Francesca .
PHYSICAL REVIEW MATERIALS, 2023, 7 (01)
[8]   Efficiently band-tailored type-III van der Waals heterostructure for tunnel diodes and optoelectronic devices [J].
Cong, Xiangna ;
Zheng, Yue ;
Huang, Fu ;
You, Qi ;
Tang, Jian ;
Fang, Feier ;
Jiang, Ke ;
Han, Cheng ;
Shi, Yumeng .
NANO RESEARCH, 2022, 15 (09) :8442-8450
[9]   Transistors based on two-dimensional materials for future integrated circuits [J].
Das, Saptarshi ;
Sebastian, Amritanand ;
Pop, Eric ;
McClellan, Connor J. ;
Franklin, Aaron D. ;
Grasser, Tibor ;
Knobloch, Theresia ;
Illarionov, Yury ;
Penumatcha, Ashish V. ;
Appenzeller, Joerg ;
Chen, Zhihong ;
Zhu, Wenjuan ;
Asselberghs, Inge ;
Li, Lain-Jong ;
Avci, Uygar E. ;
Bhat, Navakanta ;
Anthopoulos, Thomas D. ;
Singh, Rajendra .
NATURE ELECTRONICS, 2021, 4 (11) :786-799
[10]   Gate-Controlled Polarity-Reversible Photodiodes with Ambipolar 2D Semiconductors [J].
Du, Junli ;
Liao, Qingliang ;
Liu, Baishan ;
Zhang, Xiankun ;
Yu, Huihui ;
Ou, Yang ;
Xiao, Jiankun ;
Kang, Zhuo ;
Si, Haonan ;
Zhang, Zheng ;
Zhang, Yue .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (08)