Heat generation and melting heat transfer effects on MHD flow of Carreau fluid in a porous medium

被引:1
作者
Adnan, Awais [1 ]
Muhammad, Shakoor [1 ]
Zeb, Salman [2 ,4 ]
Makinde, Oluwole Daniel [3 ]
机构
[1] Abdul Wali Khan Univ, Dept Math, Mardan, Pakistan
[2] Univ Malakand, Dept Math, Chakdara, Khyber Pakhtunk, Pakistan
[3] Stellenbosch Univ, Fac Mil Sci, Stellenbosch, South Africa
[4] Univ Malakand, Dept Math, Chakdara 18800, Dir Lower, Pakistan
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2024年 / 104卷 / 04期
关键词
BOUNDARY-LAYER-FLOW; EXPONENTIALLY STRETCHING SHEET; TEMPERATURE; NANOFLUID; SURFACE; SORET;
D O I
10.1002/zamm.202300274
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider heat and mass transfer analysis of magnetohydrodynamic (MHD) Carreau fluid flow along a stretching sheet in a permeable medium with impacts of melting condition, heat generation, double diffusion, and variable thermal conductivity. The novelty of the present work is to study the effects of melting heat transfer and heat generation on MHD flow of Carreau fluid along a stretched sheet in a porous medium with influence of Dufour and Soret effects, and variable thermal conductivity. Similarity transformations procedure is used which transform the partial differential equations (PDEs) of fluid flow model into nonlinear dimensionless ordinary differential equations (ODEs). We obtained numerical solutions of ODEs and the effects of assorted governing parameters are investigated. The results showed that boosting melting parameter increases velocity and concentration fields and reduces temperature profile. Enhancing heat source parameter increases temperature profile, concentration profile observing decline for modified Dufour parameter, Schmidt number, and Soret number, and velocity of the fluid decline for magnetic and porosity parameters. Impact of governing parameters on physical quantities comprising Nusselt number, skin friction, and Sherwood number is evaluated numerically. The accuracy of our results are established in comparison with previous research for skin friction coefficient and Nusselt number.
引用
收藏
页数:15
相关论文
共 47 条
[1]   MHD stagnation point flow of Carreau fluid toward a permeable shrinking sheet: Dual solutions [J].
Akbar, N. S. ;
Nadeem, S. ;
Ul Haq, Rizwan ;
Ye, Shiwei .
AIN SHAMS ENGINEERING JOURNAL, 2014, 5 (04) :1233-1239
[2]   Thermal aspects of Carreau fluid around a wedge [J].
Ali, Usman ;
Rehman, Khalil Ur ;
Malik, M. Y. ;
Zehra, Iffat .
CASE STUDIES IN THERMAL ENGINEERING, 2018, 12 :462-469
[3]   Buongiorno model analysis on Carreau fluid flow in a microchannel with Non-linear thermal radiation impact and irreversibility [J].
Anitha, L. ;
Gireesha, B. J. .
INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2023, 43 (06) :879-892
[4]  
Armstrong R. C., 1987, Dynamics of Polymeric Liquids, V1
[5]   Magnetohydrodynamic Boundary Layer Flow Over an Exponentially Stretching Sheet Past a Porous Medium with Uniform Heat Source [J].
Baag, S. ;
Mishra, S. R. ;
Hoque, Mohammad Mainul ;
Anika, Nisat Nowroz .
JOURNAL OF NANOFLUIDS, 2018, 7 (03) :570-576
[6]  
Bilal, 2021, PARTIAL DIFFERENTIAL, V4, DOI [10.1016/j.padiff.2021.100162, DOI 10.1016/J.PADIFF.2021.100162]
[7]   RHEOLOGICAL EQUATIONS FROM MOLECULAR NETWORK THEORIES [J].
CARREAU, PJ .
TRANSACTIONS OF THE SOCIETY OF RHEOLOGY, 1972, 16 (01) :99-&
[8]   Slip flow of Carreau fluid over a slendering stretching sheet with viscous dissipation and Joule heating [J].
Gayatri, M. ;
Reddy, K. Jayarami ;
Babu, M. Jayachandra .
SN APPLIED SCIENCES, 2020, 2 (03)
[9]   MHD three dimensional double diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a stretching surface [J].
Gireesha, B. J. ;
Archana, M. ;
Prasannakumara, B. C. ;
Gorla, R. S. Reddy ;
Makinde, Oluwole Daniel .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2017, 27 (12) :2858-2878
[10]   Numerical simulation for flow and heat transfer to Carreau fluid with magnetic field effect: Dual nature study [J].
Hashim ;
Khan, Masood ;
Alshomrani, Ali Saleh .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 443 :13-21