Deep reinforcement learning based computation offloading for xURLLC services with UAV-assisted IoT-based multi-access edge computing system

被引:3
作者
Fatima, Nida [1 ]
Saxena, Paresh [1 ]
Giambene, Giovanni [2 ]
机构
[1] BITS Pilani, Dept Comp Sci & Informat Syst, Hyderabad Campus, Hyderabad 500078, India
[2] Univ Siena, Dept Informat Engn & Math Sci, I-53100 Siena, Italy
关键词
Deep reinforcement learning; Computation offloading; Internet of Things; Multi-access edge computing; Unmanned aerial vehicles; Next-generation ultra-reliable and low-latency communications; RESOURCE-ALLOCATION;
D O I
10.1007/s11276-023-03596-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
New Internet of Things (IoT) based applications with stricter key performance indicators (KPI) such as round-trip delay, network availability, energy efficiency, spectral efficiency, security, age of information, throughput, and jitter present unprecedented challenges in achieving next-generation ultra-reliable and low-latency communications (xURLLC) for sixth-generation (6 G) communication systems and beyond. In this paper, we aim to collaboratively utilize technologies such as deep reinforcement learning (DRL), unmanned aerial vehicle (UAV), and multi-access edge computing (MEC) to meet the aforementioned KPIs and support the xURLLC services. We present a DRL-empowered UAV-assisted IoT-based MEC system in which a UAV carries a MEC server and provides computation services to IoT devices. Specifically, we have employed twin delay deep deterministic policy gradient (TD3), a DRL algorithm, to find optimal computation offloading policies while simultaneously minimizing both the processing delay and the energy consumption of IoT devices, which inherently influence the KPI requirements. Numerical results illustrate the effectiveness of the proposed approach that can significantly reduce the processing delay and energy consumption, and converge quickly, outperforming the other state-of-the-art DRL-based computation offloading algorithms including Double Deep Q-Network(DDQN) and Deep Deterministic Policy Gradient (DDPG).
引用
收藏
页码:7275 / 7291
页数:17
相关论文
共 50 条
  • [31] Computation Offloading in Edge Computing Based on Deep Reinforcement Learning
    Li, MingChu
    Mao, Ning
    Zheng, Xiao
    Gadekallu, Thippa Reddy
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION NETWORKS (ICCCN 2021), 2022, 394 : 339 - 353
  • [32] UAV-Assisted Heterogeneous Multi-Server Computation Offloading With Enhanced Deep Reinforcement Learning in Vehicular Networks
    Song, Xiaoqin
    Zhang, Wenjing
    Lei, Lei
    Zhang, Xinting
    Zhang, Lijuan
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 5323 - 5335
  • [33] Deep reinforcement learning-based resource allocation in multi-access edge computing
    Khani, Mohsen
    Sadr, Mohammad Mohsen
    Jamali, Shahram
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023,
  • [34] Deep Reinforcement Learning based Path Planning for UAV-assisted Edge Computing Networks
    Peng, Yingsheng
    Liu, Yong
    Zhang, Han
    2021 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2021,
  • [35] Deep Reinforcement Learning Driven UAV-Assisted Edge Computing
    Zhang, Liang
    Jabbari, Bijan
    Ansari, Nirwan
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (24) : 25449 - 25459
  • [36] Unmanned-Aerial-Vehicle-Assisted Computation Offloading for Mobile Edge Computing Based on Deep Reinforcement Learning
    Wang, Hui
    Ke, Hongchang
    Sun, Weijia
    IEEE ACCESS, 2020, 8 : 180784 - 180798
  • [37] Multi-Relay Assisted Computation Offloading for Multi-Access Edge Computing Systems With Energy Harvesting
    Li, Molin
    Zhou, Xiaobo
    Qiu, Tie
    Zhao, Qinglin
    Li, Keqiu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (10) : 10941 - 10956
  • [38] Deep Reinforcement Learning Based Resource Management in UAV-Assisted IoT Networks
    Munaye, Yirga Yayeh
    Juang, Rong-Terng
    Lin, Hsin-Piao
    Tarekegn, Getaneh Berie
    Lin, Ding-Bing
    APPLIED SCIENCES-BASEL, 2021, 11 (05): : 1 - 20
  • [39] Deep Reinforcement Learning-Based Computation Offloading in Vehicular Edge Computing
    Zhan, Wenhan
    Luo, Chunbo
    Wang, Jin
    Min, Geyong
    Duan, Hancong
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [40] A Distributed Computation Offloading Strategy for Edge Computing Based on Deep Reinforcement Learning
    Lai, Hongyang
    Yang, Zhuocheng
    Li, Jinhao
    Wu, Celimuge
    Bao, Wugedele
    MOBILE NETWORKS AND MANAGEMENT, MONAMI 2021, 2022, 418 : 73 - 86