Deep reinforcement learning based computation offloading for xURLLC services with UAV-assisted IoT-based multi-access edge computing system

被引:3
作者
Fatima, Nida [1 ]
Saxena, Paresh [1 ]
Giambene, Giovanni [2 ]
机构
[1] BITS Pilani, Dept Comp Sci & Informat Syst, Hyderabad Campus, Hyderabad 500078, India
[2] Univ Siena, Dept Informat Engn & Math Sci, I-53100 Siena, Italy
关键词
Deep reinforcement learning; Computation offloading; Internet of Things; Multi-access edge computing; Unmanned aerial vehicles; Next-generation ultra-reliable and low-latency communications; RESOURCE-ALLOCATION;
D O I
10.1007/s11276-023-03596-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
New Internet of Things (IoT) based applications with stricter key performance indicators (KPI) such as round-trip delay, network availability, energy efficiency, spectral efficiency, security, age of information, throughput, and jitter present unprecedented challenges in achieving next-generation ultra-reliable and low-latency communications (xURLLC) for sixth-generation (6 G) communication systems and beyond. In this paper, we aim to collaboratively utilize technologies such as deep reinforcement learning (DRL), unmanned aerial vehicle (UAV), and multi-access edge computing (MEC) to meet the aforementioned KPIs and support the xURLLC services. We present a DRL-empowered UAV-assisted IoT-based MEC system in which a UAV carries a MEC server and provides computation services to IoT devices. Specifically, we have employed twin delay deep deterministic policy gradient (TD3), a DRL algorithm, to find optimal computation offloading policies while simultaneously minimizing both the processing delay and the energy consumption of IoT devices, which inherently influence the KPI requirements. Numerical results illustrate the effectiveness of the proposed approach that can significantly reduce the processing delay and energy consumption, and converge quickly, outperforming the other state-of-the-art DRL-based computation offloading algorithms including Double Deep Q-Network(DDQN) and Deep Deterministic Policy Gradient (DDPG).
引用
收藏
页码:7275 / 7291
页数:17
相关论文
共 50 条
  • [21] Machine learning-based computation offloading in multi-access edge computing: A survey
    Choudhury, Alok
    Ghose, Manojit
    Islam, Akhirul
    Yogita
    JOURNAL OF SYSTEMS ARCHITECTURE, 2024, 148
  • [22] Task Offloading and Trajectory Control for UAV-Assisted Mobile Edge Computing Using Deep Reinforcement Learning
    Zhang, Lu
    Zhang, Zi-Yan
    Min, Luo
    Tang, Chao
    Zhang, Hong-Ying
    Wang, Ya-Hong
    Cai, Peng
    IEEE ACCESS, 2021, 9 : 53708 - 53719
  • [23] Deep Reinforcement Learning Based Dynamic Trajectory Control for UAV-Assisted Mobile Edge Computing
    Wang, Liang
    Wang, Kezhi
    Pan, Cunhua
    Xu, Wei
    Aslam, Nauman
    Nallanathan, Arumugam
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2022, 21 (10) : 3536 - 3550
  • [24] Task Computation Offloading for Multi-Access Edge Computing via Attention Communication Deep Reinforcement Learning
    Li, Kexin
    Wang, Xingwei
    He, Qiang
    Yang, Mingzhou
    Huang, Min
    Dustdar, Schahram
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2023, 16 (04) : 2985 - 2999
  • [25] Dynamic Task Software Caching-Assisted Computation Offloading for Multi-Access Edge Computing
    Chen, Zhixiong
    Yi, Wenqiang
    Alam, Atm S.
    Nallanathan, Arumugam
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (10) : 6950 - 6965
  • [26] Computation Offloading in Multi-Access Edge Computing: A Multi-Task Learning Approach
    Yang, Bo
    Cao, Xuelin
    Bassey, Joshua
    Li, Xiangfang
    Qian, Lijun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2021, 20 (09) : 2745 - 2762
  • [27] Deep-Reinforcement-Learning-Based Computation Offloading for Servicing Dynamic Demand in Multi-UAV-Assisted IoT Network
    Lin, Na
    Bai, Lu
    Hawbani, Ammar
    Guan, Yunchong
    Mao, Chaojin
    Liu, Zhi
    Zhao, Liang
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (10): : 17249 - 17263
  • [28] A Deep Reinforcement Learning-Based Offloading Scheme for Multi-Access Edge Computing-Supported eXtended Reality Systems
    Trinh, Bao
    Muntean, Gabriel-Miro
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (01) : 1254 - 1264
  • [29] Deep Reinforcement Learning for Dependent Task Offloading in Multi-Access Edge Computing
    Ye, Hengzhou
    Li, Jiaming
    Lu, Qiu
    IEEE ACCESS, 2024, 12 : 166281 - 166297
  • [30] A computation offloading strategy for multi-access edge computing based on DQUIC protocol
    Yang, Peng
    Ma, Ruochen
    Yi, Meng
    Zhang, Yifan
    Li, Bing
    Bai, Zijian
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (12) : 18285 - 18318