Deep reinforcement learning based computation offloading for xURLLC services with UAV-assisted IoT-based multi-access edge computing system

被引:3
|
作者
Fatima, Nida [1 ]
Saxena, Paresh [1 ]
Giambene, Giovanni [2 ]
机构
[1] BITS Pilani, Dept Comp Sci & Informat Syst, Hyderabad Campus, Hyderabad 500078, India
[2] Univ Siena, Dept Informat Engn & Math Sci, I-53100 Siena, Italy
关键词
Deep reinforcement learning; Computation offloading; Internet of Things; Multi-access edge computing; Unmanned aerial vehicles; Next-generation ultra-reliable and low-latency communications; RESOURCE-ALLOCATION;
D O I
10.1007/s11276-023-03596-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
New Internet of Things (IoT) based applications with stricter key performance indicators (KPI) such as round-trip delay, network availability, energy efficiency, spectral efficiency, security, age of information, throughput, and jitter present unprecedented challenges in achieving next-generation ultra-reliable and low-latency communications (xURLLC) for sixth-generation (6 G) communication systems and beyond. In this paper, we aim to collaboratively utilize technologies such as deep reinforcement learning (DRL), unmanned aerial vehicle (UAV), and multi-access edge computing (MEC) to meet the aforementioned KPIs and support the xURLLC services. We present a DRL-empowered UAV-assisted IoT-based MEC system in which a UAV carries a MEC server and provides computation services to IoT devices. Specifically, we have employed twin delay deep deterministic policy gradient (TD3), a DRL algorithm, to find optimal computation offloading policies while simultaneously minimizing both the processing delay and the energy consumption of IoT devices, which inherently influence the KPI requirements. Numerical results illustrate the effectiveness of the proposed approach that can significantly reduce the processing delay and energy consumption, and converge quickly, outperforming the other state-of-the-art DRL-based computation offloading algorithms including Double Deep Q-Network(DDQN) and Deep Deterministic Policy Gradient (DDPG).
引用
收藏
页码:7275 / 7291
页数:17
相关论文
共 50 条
  • [1] Deep Reinforcement Learning Based Computation Offloading in UAV-Assisted Edge Computing
    Zhang, Peiying
    Su, Yu
    Li, Boxiao
    Liu, Lei
    Wang, Cong
    Zhang, Wei
    Tan, Lizhuang
    DRONES, 2023, 7 (03)
  • [2] Multi-objective deep reinforcement learning for computation offloading in UAV-assisted multi-access edge computing ✩
    Liu, Xu
    Chai, Zheng-Yi
    Li, Ya-Lun
    Cheng, Yan-Yang
    Zeng, Yue
    INFORMATION SCIENCES, 2023, 642
  • [3] Learning-Based Collaborative Computation Offloading in UAV-Assisted Multi-Access Edge Computing
    Xu, Zikun
    Liu, Junhui
    Guo, Ying
    Dong, Yunyun
    He, Zhenli
    ELECTRONICS, 2023, 12 (20)
  • [4] Deep-Reinforcement-Learning-Based Computation Offloading in UAV-Assisted Vehicular Edge Computing Networks
    Yan, Junjie
    Zhao, Xiaohui
    Li, Zan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (11): : 19882 - 19897
  • [5] Deep Reinforcement Learning for Multi-Hop Offloading in UAV-Assisted Edge Computing
    Nguyen Tien Hoa
    Do Van Dai
    Le Hoang Lan
    Nguyen Cong Luong
    Duc Van Le
    Niyato, Dusit
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (12) : 16917 - 16922
  • [6] Decentralized Offloading Strategies Based on Reinforcement Learning for Multi-Access Edge Computing
    Hu, Chunyang
    Li, Jingchen
    Shi, Haobin
    Ning, Bin
    Gu, Qiong
    INFORMATION, 2021, 12 (09)
  • [7] Graph Attention Network Reinforcement Learning Based Computation Offloading in Multi-Access Edge Computing
    Liu, Yuxuan
    Xia, Geming
    Chen, Jian
    Zhang, Danlei
    2023 IEEE 47TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC, 2023, : 966 - 969
  • [8] Deep reinforcement learning-based computation offloading for 5G vehicle-aware multi-access edge computing network
    Wu, Ziying
    Yan, Danfeng
    CHINA COMMUNICATIONS, 2021, 18 (11) : 26 - 41
  • [9] Computation Offloading and Trajectory Control for UAV-Assisted Edge Computing Using Deep Reinforcement Learning
    Qi, Huamei
    Zhou, Zheng
    APPLIED SCIENCES-BASEL, 2022, 12 (24):
  • [10] Online Computation Offloading in NOMA-Based Multi-Access Edge Computing: A Deep Reinforcement Learning Approach
    Nduwayezu, Maurice
    Quoc-Viet Pham
    Hwang, Won-Joo
    IEEE ACCESS, 2020, 8 : 99098 - 99109