Differentiation of Multi-Parametric Groups of Groundwater Bodies through Discriminant Analysis and Machine Learning

被引:4
|
作者
Mohsine, Ismail [1 ]
Kacimi, Ilias [1 ]
Valles, Vincent [2 ]
Leblanc, Marc [1 ,2 ]
El Mahrad, Badr [1 ,3 ,4 ]
Dassonville, Fabrice [5 ]
Kassou, Nadia [1 ]
Bouramtane, Tarik [1 ]
Abraham, Shiny [6 ]
Touiouine, Abdessamad [1 ,7 ]
Jabrane, Meryem [7 ]
Touzani, Meryem [8 ]
Barry, Abdoul Azize [9 ]
Yameogo, Suzanne [9 ]
Barbiero, Laurent [10 ]
机构
[1] Mohammed V Univ, Fac Sci Rabat, Geosci Water & Environm Lab, Rabat 10000, Morocco
[2] Avignon Univ, Mixed Res Unit EMMAH Environm Mediterraneen & Mode, Hydrogeol Lab, F-84916 Avignon, France
[3] Brabners LLP, Murray Fdn, Horton House,Exchange St, Liverpool L2 3YL, England
[4] Univ Algarve, CIMA, FCT Gambelas Campus, P-8005139 Faro, Portugal
[5] ARS Provence Alpes Cote dAzur Reg Hlth Agcy, 132 Blvd Paris, F-13331 Marseille 03, France
[6] Seattle Univ, Elect & Comp Engn Dept, Seattle, WA 98122 USA
[7] Univ Ibn Tofail, Fac Sci, Lab Geosci, BP 133, Kenitra 14000, Morocco
[8] Natl Inst Agron Res, Rabat, Morocco
[9] Joseph KI ZERBO Univ, Dept Earth Sci, LaGE, Geosci & Environm Lab, Ouagadougou 7021, Burkina Faso
[10] Univ Toulouse, CNRS, Observ Midi Pyrenees, Geosci Environm Toulouse,Inst Rech Dev,UMR 5563, 14 Ave Edouard Belin, F-31400 Toulouse, France
关键词
groundwater bodies; machine learning; discriminant analysis; chemical composition; bacteriological composition; PACA region; France; TRADE-OFF; FRAMEWORK;
D O I
10.3390/hydrology10120230
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
In order to facilitate the monitoring of groundwater quality in France, the groundwater bodies (GWB) in the Provence-Alpes-Cote d'Azur region have been grouped into 11 homogeneous clusters on the basis of their physico-chemical and bacteriological characteristics. This study aims to test the legitimacy of this grouping by predicting whether water samples belong to a given sampling point, GWB or group of GWBs. To this end, 8673 observations and 18 parameters were extracted from the Size-Eaux database, and this dataset was processed using discriminant analysis and various machine learning algorithms. The results indicate an accuracy of 67% using linear discriminant analysis and 69 to 83% using ML algorithms, while quadratic discriminant analysis underperforms in comparison, yielding a less accurate prediction of 59%. The importance of each parameter in the prediction was assessed using an approach combining recursive feature elimination (RFE) techniques and random forest feature importance (RFFI). Major ions show high spatial range and play the main role in discrimination, while trace elements and bacteriological parameters of high local and/or temporal variability only play a minor role. The disparity of the results according to the characteristics of the GWB groups (geography, altitude, lithology, etc.) is discussed. Validating the grouping of GWBs will enable monitoring and surveillance strategies to be redirected on the basis of fewer, homogeneous hydrogeological units, in order to optimize sustainable management of the resource by the health agencies.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Discriminant Analysis of Apple Origin Based on Machine Learning Algorithm
    Zhang Lixin
    Zhang Nannan
    Zhang Xiao
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (04)
  • [22] Machine learning identifies multi-parametric functional PET/MR imaging cluster to predict radiation resistance in preclinical head and neck cancer models
    Simon Boeke
    René M. Winter
    Sara Leibfarth
    Marcel A. Krueger
    Gregory Bowden
    Jonathan Cotton
    Bernd J. Pichler
    Daniel Zips
    Daniela Thorwarth
    European Journal of Nuclear Medicine and Molecular Imaging, 2023, 50 : 3084 - 3096
  • [23] Machine learning identifies multi-parametric functional PET/MR imaging cluster to predict radiation resistance in preclinical head and neck cancer models
    Boeke, Simon
    Winter, Rene M.
    Leibfarth, Sara
    Krueger, Marcel A.
    Bowden, Gregory
    Cotton, Jonathan
    Pichler, Bernd J.
    Zips, Daniel
    Thorwarth, Daniela
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2023, 50 (10) : 3084 - 3096
  • [24] Spatial analysis of groundwater flowing artesian condition using machine learning techniques
    Al-Abadi, Alaa M.
    Alsamaani, Jassim J.
    GROUNDWATER FOR SUSTAINABLE DEVELOPMENT, 2020, 11
  • [25] Single-Image Multi-Parametric Representation of Optical Properties through Encodings to the HSV Color Space
    Mieites, Veronica
    Gutierrez-Gutierrez, Jose A.
    Lopez-Higuera, Jose M.
    Conde, Olga M.
    APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [26] Multi-parametric and multi-regional histogram analysis of MRI: modality integration reveals imaging phenotypes of glioblastoma
    Li, Chao
    Wang, Shuo
    Serra, Angela
    Torheim, Turid
    Yan, Jiun-Lin
    Boonzaier, Natalie R.
    Huang, Yuan
    Matys, Tomasz
    McLean, Mary A.
    Markowetz, Florian
    Price, Stephen J.
    EUROPEAN RADIOLOGY, 2019, 29 (09) : 4718 - 4729
  • [27] Crime Analysis Through Machine Learning
    Kim, Suhong
    Joshi, Param
    Kalsi, Parminder Singh
    Taheri, Pooya
    2018 IEEE 9TH ANNUAL INFORMATION TECHNOLOGY, ELECTRONICS AND MOBILE COMMUNICATION CONFERENCE (IEMCON), 2018, : 415 - 420
  • [28] Radiogenomic analysis of PTEN mutation in glioblastoma using preoperative multi-parametric magnetic resonance imaging
    Yiming Li
    Yuchao Liang
    Zhiyan Sun
    Kaibin Xu
    Xing Fan
    Shaowu Li
    Zhong Zhang
    Tao Jiang
    Xing Liu
    Yinyan Wang
    Neuroradiology, 2019, 61 : 1229 - 1237
  • [29] Radiogenomic analysis of PTEN mutation in glioblastoma using preoperative multi-parametric magnetic resonance imaging
    Li, Yiming
    Liang, Yuchao
    Sun, Zhiyan
    Xu, Kaibin
    Fan, Xing
    Li, Shaowu
    Zhang, Zhong
    Jiang, Tao
    Liu, Xing
    Wang, Yinyan
    NEURORADIOLOGY, 2019, 61 (11) : 1229 - 1237
  • [30] Multi-parametric and multi-regional histogram analysis of MRI: modality integration reveals imaging phenotypes of glioblastoma
    Chao Li
    Shuo Wang
    Angela Serra
    Turid Torheim
    Jiun-Lin Yan
    Natalie R. Boonzaier
    Yuan Huang
    Tomasz Matys
    Mary A. McLean
    Florian Markowetz
    Stephen J. Price
    European Radiology, 2019, 29 : 4718 - 4729