A META-FEATURE MODEL FOR EXPLOITING DIFFERENT REGRESSORS TO ESTIMATE SUGARCANE CROP YIELD

被引:0
作者
Falaguasta Barbosa, Luiz Antonio [1 ]
Guimaraes Pedronette, Daniel Carlos [1 ]
Guilherme, Ivan Rizzo [1 ]
机构
[1] Sao Paulo State Univ UNESP, BR-13506700 Rio Claro, Brazil
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
基金
巴西圣保罗研究基金会;
关键词
D O I
10.1109/IGARSS52108.2023.10283309
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The crop yield prediction is crucial for the sugarcane grower to estimate the amount of biomass that will be harvested in decision-making for the acquisition of agricultural fertilizers and pesticides, for carrying out the harvest, and for the reform of the cane field. Usually, the features used for crop yield prediction are based on the direct observations of what occurs on the field collected by sensors or manually. But modeling the problem with new features, calculated by regressions applied to features collected from the phenomenon, can help to explore better the results that dataset retrieves. And it is possible by using these retrieves as new features to be modeled in other regressions. This article explores the viability of producing new features, called here meta-features (MF), to find better results for the sugarcane crop yield prediction. These meta-features were created from the results obtained by different regressors used to analyze which of them would present the best prediction in the original dataset. The regressions using these meta-features obtained better results in terms of (R) over bar (2) and errors associated with the crop yield measured on the field.
引用
收藏
页码:2030 / 2033
页数:4
相关论文
共 50 条
[31]   A Novel Robust Meta-Model Framework for Predicting Crop Yield Probability Distributions Using Multisource Data [J].
T. Ermolieva ;
P. Havlík ;
A. Lessa-Derci-Augustynczik ;
E. Boere ;
S. Frank ;
T. Kahil ;
G. Wang ;
J. Balkovič ;
R. Skalský ;
C. Folberth ;
N. Komendantova ;
P. S. Knopov .
Cybernetics and Systems Analysis, 2023, 59 :844-858
[32]   Impacts of future climate change on rice yield based on crop model simulation-A meta-analysis [J].
Li, Na ;
Zhao, Yating ;
Han, Jinsheng ;
Yang, Qiliang ;
Liang, Jiaping ;
Liu, Xiaogang ;
Wang, Yazhou ;
Huang, Zhengzhong .
SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 949
[33]   A Novel Robust Meta-Model Framework for Predicting Crop Yield Probability Distributions Using Multisource Data [J].
Ermolieva, T. ;
Havlik, P. ;
Lessa-Derci-Augustynczik, A. ;
Boere, E. ;
Frank, S. ;
Kahil, T. ;
Wang, G. ;
Balkovic, J. ;
Skalsky, R. ;
Folberth, C. ;
Komendantova, N. ;
Knopov, P. S. .
CYBERNETICS AND SYSTEMS ANALYSIS, 2023, 59 (5) :844-858
[34]   Maximizing sugarcane yield by increasing plant population density, minimizing NO3-N leaching and improving soil organic matter in different crop rotations [J].
Yadav, RL ;
Prasad, SR .
JOURNAL OF AGRONOMY AND CROP SCIENCE-ZEITSCHRIFT FUR ACKER UND PFLANZENBAU, 1997, 178 (02) :117-123
[35]   Utilization of the cropgro-soybean model to estimate yield loss caused by Asian rust in cultivars with different cycle [J].
Rodrigues, Rafael de Avila ;
Pedrini, Joao Eduardo ;
Fraisse, Clyde William ;
Cunha Fernandes, Jose Mauricio ;
Justino, Flavio Barbosa ;
Heinemann, Alexandre Bryan ;
Costa, Luiz Claudio ;
Ribeiro do Vale, Francisco Xavier .
BRAGANTIA, 2012, 71 (02) :308-317
[36]   Evaluation of DSSAT-CANEGRO model for phenology and yield attributes of sugarcane grown in different agroclimatic zones of Punjab, India [J].
Singh, Jashandeep ;
Mishra, S. K. ;
Kingra, P. K. ;
Singh, Kuldeep ;
Biswas, Barun ;
Singh, Vikrant .
JOURNAL OF AGROMETEOROLOGY, 2018, 20 (04) :280-285
[37]   The effect of temperature rise to rice crop yield in Indonesia uses Shierary Rice model with geographical information system (GIS) feature [J].
Yuliawan, Taufiq ;
Handoko, I. .
2ND INTERNATIONAL SYMPOSIUM ON LAPAN-IPB SATELLITE (LISAT) FOR FOOD SECURITY AND ENVIRONMENTAL MONITORING, 2016, 33 :214-220
[38]   Effects of different pipe burial depths on crop yield, water productivity, and irrigation water productivity: A global meta-analysis [J].
Zhang, Fan ;
Wang, Xiukang ;
Liu, Shiju ;
Ren, Hao ;
Wang, Yandong ;
Han, Juan .
EUROPEAN JOURNAL OF AGRONOMY, 2025, 166
[39]   PREDICTION OF PEARL MILLER YIELD USING CROP WATER-BALANCE MODEL FOR DIFFERENT AGROCLIMATIC ZONES OF GUJARAT STATE [J].
SAHU, DD ;
SASTRY, PSN ;
DIXIT, SK ;
PANDYA, HR .
ANNALS OF ARID ZONE, 1994, 33 (03) :219-222
[40]   Crop Model Data Assimilation with Particle Filter for Yield Prediction Using Leaf Area Index of Different Temporal Scales [J].
Li, He ;
Chen, Zhongxin ;
Wu, Wenbin ;
Jiang, Zhiwei ;
Liu, Bin ;
Hasi, Tuya .
2015 FOURTH INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS, 2015,