Assessment of Deep Learning-Based Nowcasting Using Weather Radar in South Korea

被引:2
作者
Yoon, Seong-Sim [1 ]
Shin, Hongjoon [2 ]
Heo, Jae-Yeong [3 ]
Choi, Kwang-Bae [2 ]
机构
[1] Korea Inst Civil Engn & Bldg Technol, 283 Goyangdae Ro, Goyang Si 10223, Gyeonggi Do, South Korea
[2] Korea Hydro Nucl Power Co Ltd, Hydropower Res & Training Ctr, Gyeongju Si 38120, Gyeongsangbuk D, South Korea
[3] Sejong Univ, Dept Civil & Environm Engn, 209 Neungdong Ro, Seoul 05006, South Korea
关键词
deep learning; weather radar; Korea; nowcasting; convolutional neural network; generative adversarial network; recursive strategy;
D O I
10.3390/rs15215197
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study examines the effectiveness of various deep learning algorithms in nowcasting using weather radar data from South Korea. Herein, the algorithms examined include RainNet, ConvLSTM2D U-Net, a U-Net-based recursive model, and a generative adversarial network. Moreover, this study used S-band radar data from the Ministry of Environment to assess the predictive performance of these models. Results show the efficacy of these algorithms in short-term rainfall prediction. Specifically, for a threshold of 0.1 mm/h, the recursive RainNet model achieved a critical success index (CSI) of 0.826, an F1 score of 0.781, and a mean absolute error (MAE) of 0.378. However, for a higher threshold of 5 mm/h, the model achieved an average CSI of 0.498, an F1 score of 0.577, and a MAE of 0.307. Furthermore, some models exhibited spatial smoothing issues with increasing rainfall-prediction times. The findings of this research hold promise for applications of societal importance, especially for preventing disasters due to extreme weather events.
引用
收藏
页数:17
相关论文
共 20 条
[1]   RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting [J].
Ayzel, Georgy ;
Scheffer, Tobias ;
Heistermann, Maik .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (06) :2631-2644
[2]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[3]  
Kim M.O., 2021, Korean Climate Change Assessment Report 2020The Physical Science Basis 40
[4]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001
[5]  
Nair V., 2010, P 27 INT C MACH LEAR, P807
[6]   Quantifying the risk of extreme seasonal precipitation events in a changing climate [J].
Palmer, TN ;
Rälsänen, J .
NATURE, 2002, 415 (6871) :512-514
[7]   Computer Vision in Precipitation Nowcasting: Applying Image Quality Assessment Metrics for Training Deep Neural Networks [J].
Quang-Khai Tran ;
Song, Sa-kwang .
ATMOSPHERE, 2019, 10 (05)
[8]   Skilful precipitation nowcasting using deep generative models of radar [J].
Ravuri, Suman ;
Lenc, Karel ;
Willson, Matthew ;
Kangin, Dmitry ;
Lam, Remi ;
Mirowski, Piotr ;
Fitzsimons, Megan ;
Athanassiadou, Maria ;
Kashem, Sheleem ;
Madge, Sam ;
Prudden, Rachel ;
Mandhane, Amol ;
Clark, Aidan ;
Brock, Andrew ;
Simonyan, Karen ;
Hadsell, Raia ;
Robinson, Niall ;
Clancy, Ellen ;
Arribas, Alberto ;
Mohamed, Shakir .
NATURE, 2021, 597 (7878) :672-+
[9]   Deep learning and process understanding for data-driven Earth system science [J].
Reichstein, Markus ;
Camps-Valls, Gustau ;
Stevens, Bjorn ;
Jung, Martin ;
Denzler, Joachim ;
Carvalhais, Nuno ;
Prabhat .
NATURE, 2019, 566 (7743) :195-204
[10]   Skill and relative economic value of the ECMWF ensemble prediction system [J].
Richardson, DS .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2000, 126 (563) :649-667