Green synthesized 3D coconut shell biochar/polyethylene glycol composite as thermal energy storage material

被引:16
作者
Kalidasan, B. [1 ]
Pandey, A. K. [1 ,2 ]
Saidur, R. [1 ,3 ]
Aljafari, Belqasem [4 ]
Yadav, Aman [5 ]
Samykano, M. [5 ]
机构
[1] Sunway Univ, Sch Engn & Technol, RCNMET, 5 Jalan Univ,Bandar Sunway, Petaling Jaya 47500, Selangor Darul, Malaysia
[2] Saveetha Univ, Saveetha Inst Med & Tech Sci, Saveetha Med Coll & Hosp, Ctr Global Hlth Res, Chennai, Tamil Nadu, India
[3] Univ Lancaster, Lancaster LA1 4YW, England
[4] Najran Univ, Coll Engn, Dept Elect Engn, Najran 11001, Saudi Arabia
[5] Univ Malaysia Pahang Al Sultan Abdullah, Fac Mech & Automot Engn Technol, Pekan 26600, Pahang, Malaysia
关键词
Coconut shell; Green synthesise; 3D nanoparticle; Phase change material; Thermal energy storage; PHASE-CHANGE MATERIALS; CONDUCTIVITY ENHANCEMENT; NANOCOMPOSITE; PYROLYSIS; BIOCHAR;
D O I
10.1016/j.seta.2023.103505
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Developing stable, economic, safer and carbon-based nanoparticles from agro solid waste facilitates a new dimension of advancement for eco-friendly nanomaterials in competition to existing nanoparticles. Herewith, a three dimensional highly porous honeycomb structured carbon-based coconut shell (CS) nanoparticle is prepared through green synthesis technique using tube furnace to energies organic phase change material (PCM). CS nanoparticle synthesis using a green approach is incorporated with polyethylene glycol (PEG) using a two-step technique to develop PEG/CS nanocomposite PCM. Thermophysical features of the nanocomposites are characterized using transient hot bridge (ThB), differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA), whereas optical property and chemical stability is evaluated using UV-Vis and FTIR spectrometers. Resulting nanocomposite demonstrates higher thermal conductivity by 114.5 % (improved from 0.24 W/ m.K to 0.515 W/m.K). Energy storage enthalpy increased from 141.2 J/g to 150.1 J/g with 1.0 % weight fraction of CS nanoparticles. Optical absorbance of the nanocomposite is improved by 2.14 times compared to base PCM. The developed nanocomposite samples exhibit extreme thermal stability up to 215 degrees C. The 3D porous structure of CS nanoparticles shows better contact area with PEG, causing low interfacial thermal resistance for improved thermal network channels and pathways for extra heat transfer and phonon propagation.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Soffian M.S., 2022, Environ. Adv., V9
  • [42] Composites with a Novel Core-shell Structural Expanded Perlite/Polyethylene glycol Composite PCM as Novel Green Energy Storage Composites for Building Energy Conservation
    Sun, Jingmeng
    Zhao, Junqi
    Zhang, Weiye
    Xu, Jianuo
    Wang, Beibei
    Wang, Xuanye
    Zhou, Jun
    Guo, Hongwu
    Liu, Yi
    [J]. APPLIED ENERGY, 2023, 330
  • [43] Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges
    Tong, Xuan
    Li, Nianqi
    Zeng, Min
    Wang, Qiuwang
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 108 : 398 - 422
  • [44] A promising form-stable phase change material prepared using cost effective pinecone biochar as the matrix of palmitic acid for thermal energy storage
    Wan, Ye-chao
    Chen, Yan
    Cui, Zhi-xing
    Ding, Han
    Gao, Shu-feng
    Han, Zhi
    Gao, Jun-kai
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [45] Thermal behavior of polyethylene glycol based phase change materials for thermal energy storage with multiwall carbon nanotubes additives
    Wang, Chaoming
    Chen, Ke
    Huang, Jun
    Cai, Zhengyu
    Hu, Zhanjiang
    Wang, Tingjun
    [J]. ENERGY, 2019, 180 : 873 - 880
  • [46] Electro- and photo-thermal energy conversion investigation of polyethylene glycol infiltrated porous carbon aerogels
    Wang, Tingjun
    Wang, Chaoming
    Huang, Zheng
    Liu, Jiahao
    Yin, Huibin
    Zhu, Peng
    [J]. JOURNAL OF ENERGY STORAGE, 2023, 68
  • [47] High-Performance Thermally Conductive Phase Change Composites by Large-Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting
    Wu, Si
    Li, Tingxian
    Tong, Zhen
    Chao, Jingwei
    Zhai, Tianyao
    Xu, Jiaxing
    Yan, Taisen
    Wu, Minqiang
    Xu, Zhenyuan
    Bao, Hua
    Deng, Tao
    Wang, Ruzhu
    [J]. ADVANCED MATERIALS, 2019, 31 (49)
  • [48] Preparation and thermal conductivity enhancement of a paraffin wax-based composite phase change material doped with garlic stem biochar microparticles
    Xiong, Teng
    Ok, Yong Sik
    Dissanayake, Pavani Dulanja
    Tsang, Daniel C. W.
    Kim, Sumin
    Kua, Harn Wei
    Shah, Kwok Wei
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 827
  • [49] Thermal conductivity enhancement of polyethylene glycol/expanded perlite with carbon layer for heat storage application
    Zhang, Xiaoguang
    Wen, Ruilong
    Tang, Chao
    Wu, Bogang
    Huang, Zhaohui
    Min, Xin
    Huang, Yaoting
    Liu, Yangai
    Fang, Minghao
    Wu, Xiaowen
    [J]. ENERGY AND BUILDINGS, 2016, 130 : 113 - 121
  • [50] Facile synthesis of hierarchical porous carbon material by potassium tartrate activation for chloramphenicol removal
    Zhu, Xiuzhen
    Gao, Yuan
    Yue, Qinyan
    Song, Yan
    Gao, Baoyu
    Xu, Xing
    [J]. JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2018, 85 : 141 - 148