Green synthesized 3D coconut shell biochar/polyethylene glycol composite as thermal energy storage material

被引:16
作者
Kalidasan, B. [1 ]
Pandey, A. K. [1 ,2 ]
Saidur, R. [1 ,3 ]
Aljafari, Belqasem [4 ]
Yadav, Aman [5 ]
Samykano, M. [5 ]
机构
[1] Sunway Univ, Sch Engn & Technol, RCNMET, 5 Jalan Univ,Bandar Sunway, Petaling Jaya 47500, Selangor Darul, Malaysia
[2] Saveetha Univ, Saveetha Inst Med & Tech Sci, Saveetha Med Coll & Hosp, Ctr Global Hlth Res, Chennai, Tamil Nadu, India
[3] Univ Lancaster, Lancaster LA1 4YW, England
[4] Najran Univ, Coll Engn, Dept Elect Engn, Najran 11001, Saudi Arabia
[5] Univ Malaysia Pahang Al Sultan Abdullah, Fac Mech & Automot Engn Technol, Pekan 26600, Pahang, Malaysia
关键词
Coconut shell; Green synthesise; 3D nanoparticle; Phase change material; Thermal energy storage; PHASE-CHANGE MATERIALS; CONDUCTIVITY ENHANCEMENT; NANOCOMPOSITE; PYROLYSIS; BIOCHAR;
D O I
10.1016/j.seta.2023.103505
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Developing stable, economic, safer and carbon-based nanoparticles from agro solid waste facilitates a new dimension of advancement for eco-friendly nanomaterials in competition to existing nanoparticles. Herewith, a three dimensional highly porous honeycomb structured carbon-based coconut shell (CS) nanoparticle is prepared through green synthesis technique using tube furnace to energies organic phase change material (PCM). CS nanoparticle synthesis using a green approach is incorporated with polyethylene glycol (PEG) using a two-step technique to develop PEG/CS nanocomposite PCM. Thermophysical features of the nanocomposites are characterized using transient hot bridge (ThB), differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA), whereas optical property and chemical stability is evaluated using UV-Vis and FTIR spectrometers. Resulting nanocomposite demonstrates higher thermal conductivity by 114.5 % (improved from 0.24 W/ m.K to 0.515 W/m.K). Energy storage enthalpy increased from 141.2 J/g to 150.1 J/g with 1.0 % weight fraction of CS nanoparticles. Optical absorbance of the nanocomposite is improved by 2.14 times compared to base PCM. The developed nanocomposite samples exhibit extreme thermal stability up to 215 degrees C. The 3D porous structure of CS nanoparticles shows better contact area with PEG, causing low interfacial thermal resistance for improved thermal network channels and pathways for extra heat transfer and phonon propagation.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Effect of structural characteristics and surface functional groups of biochar on thermal properties of different organic phase change materials: Dominant encapsulation mechanisms
    Lv, Laiquan
    Wang, Jiankang
    Ji, Mengting
    Zhang, Yize
    Huang, Shengyao
    Cen, Kefa
    Zhou, Hao
    [J]. RENEWABLE ENERGY, 2022, 195 : 1238 - 1252
  • [32] Preparation, characterization and environmental/electrochemical energy storage testing of low-cost biochar from natural chitin obtained via pyrolysis at mild conditions
    Magnacca, Giuliana
    Guerretta, Federico
    Vizintin, Alen
    Benzi, Paola
    Valsania, Maria C.
    Nistico, Roberto
    [J]. APPLIED SURFACE SCIENCE, 2018, 427 : 883 - 893
  • [33] Optimization of eco-friendly Pinus resinosa biochar-dodecanoic acid phase change composite for the cleaner environment
    Mandal, Soumen
    Ishak, Shafiq
    Lee, Dong-Eun
    Park, Taejoon
    [J]. JOURNAL OF ENERGY STORAGE, 2022, 55
  • [34] Mehling H, 2007, NATO SCI SER II-MATH, V234, P257
  • [35] Murugesh M., 2019, The Elements of Periodic Table
  • [36] Core shell paraffin/silica nanocomposite: A promising phase change material for thermal energy storage
    Paneliya, Sagar
    Khanna, Sakshum
    Utsav
    Singh, Ayush Pratap
    Patel, Yash Kumar
    Vanpariya, Anjali
    Makani, Nisha Hiralal
    Banerjee, Rupak
    Mukhopadhyay, Indrajit
    [J]. RENEWABLE ENERGY, 2021, 167 : 591 - 599
  • [37] New energy-saving building developed by using polyethylene glycol/halloysite nanotube energy-storage blanket and heat-insulating glass with NaxWO3@SiO2 nano-coating
    Peng, Lihua
    Xu, Ziqing
    Chao, Luomeng
    Zheng, Dapeng
    Yang, Haibin
    Sun, Changwei
    Cui, Hongzhi
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2023, 250
  • [38] Enhanced thermal energy storage performance of salt hydrate phase change material: Effect of cellulose nanofibril and graphene nanoplatelet
    Shen, Zhenghui
    Kwon, Soojin
    Lee, Hak Lae
    Toivakka, Martti
    Oh, Kyudeok
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2021, 225
  • [39] Honeycomb carbon fibers strengthened composite phase change materials for superior thermal energy storage
    Sheng, Nan
    Rao, Zhonghao
    Zhu, Chunyu
    Habazaki, Hiroki
    [J]. APPLIED THERMAL ENGINEERING, 2020, 164 (164)
  • [40] Synthesis and characterization of polyethylene glycol/modified attapulgite form-stable composite phase change material for thermal energy storage
    Shi, Junbing
    Li, Min
    [J]. SOLAR ENERGY, 2020, 205 : 62 - 73