Echo state network implementation for chaotic time series prediction

被引:6
|
作者
de la Fraga, Luis Gerardo [1 ]
Ovilla-Martinez, Brisbane [1 ]
Tlelo-Cuautle, Esteban [2 ]
机构
[1] Cinvestav, Comp Sci Dept, Mexico City 07360, Mexico
[2] INAOE, Dept Elect, Luis Enrique Erro 1, Tonatzintla 72840, Puebla, Mexico
关键词
FPGA; Echo state network; Chaotic time series prediction; Hyperbolic tangent function approximation; Fixed point arithmetic;
D O I
10.1016/j.micpro.2023.104950
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The implementation of an Echo State Neural Network (ESNN) for chaotic time series prediction is introduced. First, the ESNN is simulated using floating-point arithmetic and afterwards fixed-point arithmetic. The synthesis of the ESNN is done in a field-programmable gate array (FPGA), in which the activation function of the neurons' outputs is a hyperbolic tangent one, and is approximated with a new design of quadratic order b-splines and four integer multipliers. The FPGA implementation of the ESNN is applied to predict four chaotic time series associated to the Lorenz, Chua, Lu, and Rossler chaotic oscillators. The experimental results show that with 50 hidden neurons, the fixed-point arithmetic is good enough when using 15 or 16 bits in the fractional part: using more bits does not reduce the mean-squared error prediction. The neurons are limited to four inputs in the hidden layer to achieve a more efficient hardware implementation, guaranteeing a prediction of more than 10 steps ahead.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Chaotic time series prediction by noisy echo state network
    Shinozaki, Aren
    Miyano, Takaya
    Horio, Yoshihiko
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2020, 11 (04): : 466 - 479
  • [2] A Modified Echo State Network in Chaotic Time Series Prediction
    Li Dingyuan
    Liu Fu
    Qiao Junfei
    Li Rong
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 4350 - 4353
  • [3] Hierarchical plasticity echo state network for chaotic time series prediction
    Na X.-D.
    Wang J.-N.
    Liu M.-R.
    Ren W.-J.
    Han M.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (01): : 133 - 142
  • [4] Modified echo state network for prediction of nonlinear chaotic time series
    Sui, Yongbo
    Gao, Hui
    NONLINEAR DYNAMICS, 2022, 110 (04) : 3581 - 3603
  • [5] Chaotic time series prediction based on robust echo state network
    Li De-Cai
    Han Min
    ACTA PHYSICA SINICA, 2011, 60 (10)
  • [6] Multiple clusters echo state network for chaotic time series prediction
    Song Qing-Song
    Feng Zu-Ren
    Li Ren-Hou
    ACTA PHYSICA SINICA, 2009, 58 (07) : 5057 - 5064
  • [7] Chaotic time series prediction based on wavelet echo state network
    Song Tong
    Li Han
    ACTA PHYSICA SINICA, 2012, 61 (08)
  • [8] Modified echo state network for prediction of nonlinear chaotic time series
    Yongbo Sui
    Hui Gao
    Nonlinear Dynamics, 2022, 110 : 3581 - 3603
  • [9] Enhanced FPGA implementation of Echo State Networks for chaotic time series prediction
    Gonzalez-Zapata, Astrid Maritza
    Fraga, Luis Gerardo de la
    Ovilla-Martinez, Brisbane
    Tlelo-Cuautle, Esteban
    Cruz-Vega, Israel
    INTEGRATION-THE VLSI JOURNAL, 2023, 92 : 48 - 57
  • [10] Hybrid Regularized Echo State Network for Multivariate Chaotic Time Series Prediction
    Xu, Meiling
    Han, Min
    Qiu, Tie
    Lin, Hongfei
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (06) : 2305 - 2315