Combinatorial blockade for cancer immunotherapy: targeting emerging immune checkpoint receptors

被引:27
作者
Roy, Dia [1 ]
Gilmour, Cassandra [1 ,2 ]
Patnaik, Sachin [1 ]
Wang, Li Lily [1 ,2 ]
机构
[1] Cleveland Clin Fdn, Dept Translat Hematol & Oncol Res, Cleveland, OH 44195 USA
[2] Case Western Reserve Univ, Sch Med, Dept Mol Med, Cleveland, OH 44106 USA
来源
FRONTIERS IN IMMUNOLOGY | 2023年 / 14卷
关键词
immune checkpoint inhibitors; combinatorial immunotherapies; PD-1; CTLA-4; VISTA; TIGIT; TIM3; LAG3; CD8(+) T-CELL; CO-INHIBITORY MOLECULES; REGULATORY T; LUNG-CANCER; B-CELL; ANTITUMOR IMMUNITY; INFILTRATING LYMPHOCYTES; INTRACELLULAR EXPRESSION; PD-1; EXPRESSION; DENDRITIC CELLS;
D O I
10.3389/fimmu.2023.1264327
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The differentiation, survival, and effector function of tumor-specific CD8+ cytotoxic T cells lie at the center of antitumor immunity. Due to the lack of proper costimulation and the abundant immunosuppressive mechanisms, tumor-specific T cells show a lack of persistence and exhausted and dysfunctional phenotypes. Multiple coinhibitory receptors, such as PD-1, CTLA-4, VISTA, TIGIT, TIM-3, and LAG-3, contribute to dysfunctional CTLs and failed antitumor immunity. These coinhibitory receptors are collectively called immune checkpoint receptors (ICRs). Immune checkpoint inhibitors (ICIs) targeting these ICRs have become the cornerstone for cancer immunotherapy as they have established new clinical paradigms for an expanding range of previously untreatable cancers. Given the nonredundant yet convergent molecular pathways mediated by various ICRs, combinatorial immunotherapies are being tested to bring synergistic benefits to patients. In this review, we summarize the mechanisms of several emerging ICRs, including VISTA, TIGIT, TIM-3, and LAG-3, and the preclinical and clinical data supporting combinatorial strategies to improve existing ICI therapies.
引用
收藏
页数:16
相关论文
共 208 条
[11]   Coinhibitory Pathways in Immunotherapy for Cancer [J].
Baumeister, Susanne H. ;
Freeman, Gordon J. ;
Dranoff, Glenn ;
Sharpe, Arlene H. .
ANNUAL REVIEW OF IMMUNOLOGY, VOL 34, 2016, 34 :539-573
[12]   PD-L1 blockade engages tumor-infiltrating lymphocytes to co-express targetable activating and inhibitory receptors [J].
Beyrend, Guillaume ;
van der Gracht, Esme ;
Yilmaz, Ayse ;
van Duikeren, Suzanne ;
Camps, Marcel ;
Hollt, Thomas ;
Vilanova, Anna ;
van Unen, Vincent ;
Koning, Frits ;
de Miranda, Noel F. C. C. ;
Arens, Ramon ;
Ossendorp, Ferry .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2019, 7 (01)
[13]   The novel negative checkpoint regulator VISTA is expressed in gastric carcinoma and associated with PD-L1/PD-1: A future perspective for a combined gastric cancer therapy? [J].
Boeger, Christine ;
Behrens, Hans-Michael ;
Krueger, Sandra ;
Roecken, Christoph .
ONCOIMMUNOLOGY, 2017, 6 (04)
[14]   Pembrolizumab Plus Ipilimumab or Placebo for Metastatic Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score ≥ 50%: Randomized, Double-Blind Phase III KEYNOTE-598 Study [J].
Boyer, Michael ;
Sendur, Mehmet A. N. ;
Rodriguez-Abreu, Delvys ;
Park, Keunchil ;
Lee, Dae Ho ;
Cicin, Irfan ;
Yumuk, Perran Fulden ;
Orlandi, Francisco J. ;
Leal, Ticiana A. ;
Molinier, Olivier ;
Soparattanapaisarn, Nopadol ;
Langleben, Adrian ;
Califano, Raffaele ;
Medgyasszay, Balazs ;
Hsia, Te-Chun ;
Otterson, Gregory A. ;
Xu, Lu ;
Piperdi, Bilal ;
Samkari, Ayman ;
Reck, Martin .
JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (21) :2327-+
[15]   TIGIT blockade repolarizes AML-associated TIGIT+ M2 macrophages to an M1 phenotype and increases CD47-mediated phagocytosis [J].
Brauneck, Franziska ;
Fischer, Brit ;
Witt, Marius ;
Muschhammer, Jana ;
Oelrich, Jennyfer ;
Avelar, Pedro Henrique da Costa ;
Tsoka, Sophia ;
Bullinger, Lars ;
Seubert, Elisa ;
Smit, Daniel J. ;
Bokemeyer, Carsten ;
Ackermann, Christin ;
Wellbrock, Jasmin ;
Haag, Friedrich ;
Fiedler, Walter .
JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2022, 10 (12)
[16]   Regulation of expression of the human lymphocyte activation gene-3 (LAG-3) molecule, a ligand for MHC class II [J].
Bruniquel, D ;
Borie, N ;
Hannier, S ;
Triebel, F .
IMMUNOGENETICS, 1998, 48 (02) :116-124
[17]   CTLA-4 and PD-1 Pathways Similarities, Differences, and Implications of Their Inhibition [J].
Buchbinder, Elizabeth I. ;
Desai, Anupam .
AMERICAN JOURNAL OF CLINICAL ONCOLOGY-CANCER CLINICAL TRIALS, 2016, 39 (01) :98-106
[18]   LAG-3+tumor infiltrating lymphocytes in breast cancer: clinical correlates and association with PD-1/PD-L1+tumors [J].
Burugu, S. ;
Gao, D. ;
Leung, S. ;
Chia, S. K. ;
Nielsen, T. O. .
ANNALS OF ONCOLOGY, 2017, 28 (12) :2977-2984
[19]   Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses [J].
Butte, Manish J. ;
Keir, Mary E. ;
Phamduy, Theresa B. ;
Sharpe, Arlene H. ;
Freeman, Gordon J. .
IMMUNITY, 2007, 27 (01) :111-122
[20]   Nivolumab Plus Ipilimumab in Patients With Advanced Melanoma: Updated Survival, Response, and Safety Data in a Phase I Dose-Escalation Study [J].
Callahan, Margaret K. ;
Kluger, Harriet ;
Postow, Michael A. ;
Segal, Neil H. ;
Lesokhin, Alexander ;
Atkins, Michael B. ;
Kirkwood, John M. ;
Krishnan, Suba ;
Bhore, Rafia ;
Horak, Christine ;
Wolchok, Jedd D. ;
Sznol, Mario .
JOURNAL OF CLINICAL ONCOLOGY, 2018, 36 (04) :391-+