Photovoltaic power resource at the Atacama Desert under climate change

被引:6
作者
Bayo-Besteiro, S. [1 ]
de la Torre, L. [1 ]
Costoya, X. [1 ]
Gomez-Gesteira, M. [1 ]
Perez-Alarcon, A. [1 ]
deCastro, M. [1 ]
Anel, J. A. [1 ]
机构
[1] Univ Vigo, EPhysLab, CIM UVigo, Orense, Spain
关键词
Photovoltaic power under climate change; Atacama; Irradiance; Temperature; Climate models; Climate scenarios; WIND-SPEED; SOLAR; ENERGY; TEMPERATURE; PERFORMANCE; REANALYSES; ERA5; TECHNOLOGIES; IRRADIANCE; PROJECTION;
D O I
10.1016/j.renene.2023.118999
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Atacama desert is a region with exceptional conditions for solar power production. However, despite its relevance, the impact of climate change on this resource in this region has barely been studied. Here, we use regional climate models to explore how climate change will affect the photovoltaic solar power resource per square meter (PVres) in Atacama. Models project average reductions in PVres of 1.5% and 1.7% under an RCP8.5 scenario, respectively, for 2021-2040 and 2041-2060. Under RCP2.6 and the same periods, reductions range between 1.2% and 0.5%. Also, we study the contribution to future changes in PVres of the downwelling shortwave radiation, air temperature and wind velocity. We find that the contribution from changes in wind velocity is negligible. Future changes of downwelling shortwave radiation, under the RCP8.5 scenario, cause up to 87% of the decrease of PVres for 2021-2040 and 84% for 2041-2060. Rising temperatures due to climate change are responsible for drops in PVres ranging between 13%-19% under RCP2.6 and 14%-16% under RCP8.5. We conclude that climate change has the potential to impact the PVres in the Atacama region while retaining exceptional conditions for solar power production.
引用
收藏
页数:9
相关论文
共 62 条
  • [1] Anel J. A., 2015, Contemp. Phys., V56, P206, DOI [10.1080/00107514.2015.1006251, DOI 10.1080/00107514.2015.1006251]
  • [2] Viewpoint The Importance of Reviewing the Code
    Anel, Juan A.
    [J]. COMMUNICATIONS OF THE ACM, 2011, 54 (05) : 40 - 41
  • [3] [Anonymous], 2022, Global Energy Review: CO2 Emissions in 2021 - Analysis
  • [4] Flexible production of green hydrogen and ammonia from variable solar and wind energy: Case study of Chile and Argentina
    Armijo, Julien
    Philibert, Cedric
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (03) : 1541 - 1558
  • [5] Methodology of Koppen-Geiger-Photovoltaic climate classification and implications to worldwide mapping of PV system performance
    Ascencio-Vasquez, Julian
    Brecl, Kristijan
    Topic, Marko
    [J]. SOLAR ENERGY, 2019, 191 : 672 - 685
  • [6] Bayo-Besteiro S., 2022, Python code, DOI [10.5281/zenodo.7178476, DOI 10.5281/ZENODO.7178476]
  • [7] Characterizing ERA-Interim and ERA5 surface wind biases using ASCAT
    Belmonte Rivas, Maria
    Stoffelen, Ad
    [J]. OCEAN SCIENCE, 2019, 15 (03) : 831 - 852
  • [8] The Norwegian Earth System Model, NorESM1-M - Part 1: Description and basic evaluation of the physical climate
    Bentsen, M.
    Bethke, I.
    Debernard, J. B.
    Iversen, T.
    Kirkevag, A.
    Seland, O.
    Drange, H.
    Roelandt, C.
    Seierstad, I. A.
    Hoose, C.
    Kristjansson, J. E.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2013, 6 (03) : 687 - 720
  • [9] Two-stage optimisation of hybrid solar power plants
    Bravo, R.
    Friedrich, D.
    [J]. SOLAR ENERGY, 2018, 164 : 187 - 199
  • [10] Multi-objective optimisation and guidelines for the design of dispatchable hybrid solar power plants with thermochemical energy storage
    Bravo, Ruben
    Ortiz, Carlos
    Chacartegui, Ricardo
    Friedrich, Daniel
    [J]. APPLIED ENERGY, 2021, 282