Federated transfer learning with consensus knowledge distillation for intelligent fault diagnosis under data privacy preserving

被引:1
作者
Xue, Xingan [1 ]
Zhao, Xiaoping [2 ]
Zhang, Yonghong [1 ]
Ma, Mengyao [2 ]
Bu, Can [3 ]
Peng, Peng [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Automat, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 210044, Peoples R China
[3] Nanjing Normal Univ, Sch Elect & Automat Engn, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
fault diagnosis; federated learning; transfer learning; consensus knowledge distillation; mutual information regularization; ROTATING MACHINERY;
D O I
10.1088/1361-6501/acf77d
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fault diagnosis with deep learning has garnered substantial research. However, the establishment of a model is contingent upon a volume of data. Moreover, centralizing the data from each device faces the problem of privacy leakage. Federated learning can cooperate with each device to form a global model without violating data privacy. Due to the data distribution discrepancy for each device, a global model trained only by the source client with labeled data fails to match the target client without labeled data. To overcome this issue, this research suggests a federated transfer learning method. A consensus knowledge distillation is adopted to train the extended target domain model. A mutual information regularization is introduced to further learn the structure information of the target client data. The source client and the extended target models are aggregated to improve model performance. The experimental results demonstrate that our method has broad application prospects.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Heterogeneous Defect Prediction Based on Federated Transfer Learning via Knowledge Distillation
    Wang, Aili
    Zhang, Yutong
    Yan, Yixin
    IEEE ACCESS, 2021, 9 : 29530 - 29540
  • [42] Federated learning based method for intelligent computing with privacy preserving in edge computing
    Liu Q.
    Xu X.
    Zhang X.
    Dou W.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2021, 27 (09): : 2604 - 2610
  • [43] Communication-Efficient and Privacy-Preserving Federated Learning via Joint Knowledge Distillation and Differential Privacy in Bandwidth-Constrained Networks
    Gad, Gad
    Gad, Eyad
    Fadlullah, Zubair Md
    Fouda, Mostafa M.
    Kato, Nei
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (11) : 17586 - 17601
  • [44] Personalized and privacy-enhanced federated learning framework via knowledge distillation
    Yu, Fangchao
    Wang, Lina
    Zeng, Bo
    Zhao, Kai
    Yu, Rongwei
    NEUROCOMPUTING, 2024, 575
  • [45] Privacy-preserving federated transfer learning for defect identification from highly imbalanced image data in additive manufacturing
    Tang, Jiafeng
    Zhao, Zhibin
    Guo, Yanjie
    Wang, Chenxi
    Zhang, Xingwu
    Yan, Ruqiang
    Chen, Xuefeng
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2024, 89
  • [46] Active federated transfer algorithm based on broad learning for fault diagnosis
    Liu, Guokai
    Shen, Weiming
    Gao, Liang
    Kusiak, Andrew
    MEASUREMENT, 2023, 208
  • [47] Privacy-Preserving Heterogeneous Federated Learning for Sensitive Healthcare Data
    Xu, Yukai
    Zhang, Jingfeng
    Gu, Yujie
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 1142 - 1147
  • [48] Privacy-Preserving Data Selection for Horizontal and Vertical Federated Learning
    Zhang, Lan
    Li, Anran
    Peng, Hongyi
    Han, Feng
    Huang, Fan
    Li, Xiang-Yang
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2024, 35 (11) : 2054 - 2068
  • [49] Deep transfer learning with limited data for machinery fault diagnosis
    Han, Te
    Liu, Chao
    Wu, Rui
    Jiang, Dongxiang
    APPLIED SOFT COMPUTING, 2021, 103
  • [50] Anonymous and Privacy-Preserving Federated Learning With Industrial Big Data
    Zhao, Bin
    Fan, Kai
    Yang, Kan
    Wang, Zilong
    Li, Hui
    Yang, Yintang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (09) : 6314 - 6323