A review on 3D printing of bioinspired hydrophobic materials: oil-water separation, water harvesting, and diverse applications

被引:26
|
作者
Wang, Xiaolong [1 ,2 ]
Hassan, Alaa [1 ]
Boudaoud, Hakim [1 ]
Xue, Fangkai [1 ]
Zhou, Zhenyu [3 ]
Liu, Xianhu [2 ]
机构
[1] Univ Lorraine, Equipequipe Rech Proc Innovatifs ERPI, F-54000 Nancy, France
[2] Zhengzhou Univ, State Key Lab Struct Anal, Natl Engn Res Ctr Adv Polymer Proc Technol, Optimizat & CAE Software Ind Equipment, Zhengzhou 450002, Peoples R China
[3] Zhongkexin Engn Consulting Beijing Co Ltd, Beijing 100039, Peoples R China
关键词
3D-printing; Additive manufacturing; Hydrophobicity; Drag reduction; Water harvesting; Oil-water separation; PDMS SPONGE; SURFACE; FABRICATION; COLLECTION; DESIGN; STEREOLITHOGRAPHY; SUPERWETTABILITY; COATINGS; RELEASE; WETTABILITY;
D O I
10.1007/s42114-023-00740-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bioinspired nanosurfaces with hydrophobicity and multifunctionality have stimulated wide interests in both basic research of fundamental wetting theory and practical application arising from various intriguing phenomena in nature. 3D printing has become one of the most promising techniques for the manufacture of biomimetic materials with versatile applications because of the various advantages including easy accessibility and low cost. Here, a comprehensive review of recent progress on 3D-printed hydrophobic materials and their application was presented to summarize the achievement of the field and look forward to the future research perspective. First, classical models of hydrophobicity and theoretical progress related to the wetting phenomena are proposed. Moreover, diverse mechanism of 3D-printing techniques is systematically summarized following the classification of the methods to gain hydrophobicity in the 3D-printing process. Subsequently, bioinspired intriguing applications including drag reduction, water harvesting, oil-water separation, and 4D-printing are introduced from theory to practice. Finally, a general summary is drawn along with future guidelines for the fabrication of hydrophobic materials which fully utilize the advantage of 3D printing.Graphical abstractComprehensive review for hydrophobic 3D-printed material: theories, applications, and future prospects for oil-water separation, water harvesting, drag reduction, and 4D-printing.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Superwetting Materials of Oil-Water Emulsion Separation
    Si, Yifan
    Guo, Zhiguang
    CHEMISTRY LETTERS, 2015, 44 (07) : 874 - 883
  • [22] A review of 3D printing processes and materials for soft robotics
    Yap, Yee Ling
    Sing, Swee Leong
    Yeong, Wai Yee
    RAPID PROTOTYPING JOURNAL, 2020, 26 (08) : 1345 - 1361
  • [23] Preparation of 2D Materials and Their Application in Oil-Water Separation
    Li, Jie
    Li, Yushan
    Lu, Yiyi
    Wang, Yuke
    Guo, Yunjie
    Shi, Wentian
    BIOMIMETICS, 2023, 8 (01)
  • [24] A comprehensive review of methodology and advancement in the development of superhydrophobic membranes for efficient oil-water separation
    Kumar, Avinash
    Mishra, Vishal
    Rajbahadur, Yadav Narendra Kumar
    Negi, Sushant
    Kar, Simanchal
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2024, 46 (07)
  • [25] Hydrogels: a review on their versatile applications for efficient and stable oil-water separation
    He, Yuxuan
    Huang, Jinxia
    Guo, Zhiguang
    Liu, Weimin
    JOURNAL OF MATERIALS CHEMISTRY A, 2025, 13 (10) : 6919 - 6953
  • [26] Advances in Asymmetric Wettable Janus Materials for Oil-Water Separation
    Zhang, Jingjing
    Wang, Congcong
    Xing, Huwei
    Fu, Qian
    Niu, Chenxi
    Lu, Lingbin
    MOLECULES, 2022, 27 (21):
  • [27] 3D printing of microwave materials, components and their applications - A review
    Holkar, Ravina R.
    Umarji, Govind G.
    Shinde, Manish D.
    Rane, Sunit B.
    JOURNAL OF MANUFACTURING PROCESSES, 2025, 137 : 280 - 305
  • [28] Hydrophobic-Superoleophilic Fluorinated Graphene Nanosheet Composites with Metal-Organic Framework HKUST-1 for Oil-Water Separation
    Yogapriya, Ravi
    Kasibhatta, Kumara Ramanatha Datta
    ACS APPLIED NANO MATERIALS, 2020, 3 (06): : 5816 - 5825
  • [29] Fundamentals and applications of 3D printing for novel materials
    Lee, Jian-Yuan
    An, Jia
    Chua, Chee Kai
    APPLIED MATERIALS TODAY, 2017, 7 : 120 - 133
  • [30] Magnetic and Hydrophobic Composite Polyurethane Sponge for Oil-Water Separation
    Jiang, Peng
    Li, Kun
    Chen, Xiquan
    Dan, Ruiqi
    Yu, Yang
    APPLIED SCIENCES-BASEL, 2020, 10 (04):