Roundness and slenderness effects on the dynamic characteristics of spar-type floating offshore wind turbine

被引:0
|
作者
Adiputra, Ristiyanto [2 ]
Fauzi, Faiz Nur [1 ]
Firdaus, Nurman [2 ]
Suyanto, Eko Marta [2 ]
Kasharjanto, Afian [2 ]
Puryantini, Navik [2 ]
Erwandi, Erwandi [2 ]
Rasgianti, Rasgianti [3 ]
Prabowo, Aditya Rio [1 ]
机构
[1] Univ Sebelas Maret, Dept Mech Engn, Surakarta 57126, Indonesia
[2] Natl Res & Innovat Agcy BRIN, Res Ctr Hydrodynam Technol, Surabaya 60112, Indonesia
[3] PT PLN Persero Res Inst, Power Generat Syst Res Dept, Jakarta 12760, Indonesia
关键词
spar; floating offshore wind turbine; boundary element method; hydrodynamic characteristics; NEMOH; PLATFORM;
D O I
10.1515/cls-2022-0213
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Spar-type floating offshore wind turbine has been massively developed considering its design simplicity and stability to withstand the wave-induced motion. However, the variation of the local sea level and the readiness of supporting production facilities demand the spar design to adapt in a viable way. Considering this, the present article investigated how the slenderness (length over diameter ratio) and the roundness of cross section influence the hydrodynamic characteristics, which are the crucial parameters of floater performances. The OC3-Hywind spar-type floating platform was adapted as the reference model. The length of the reference floater was then varied with a ratio of 1.5, 2, 2.5, and 3 and the diameter was proportionally scaled to obtain constant buoyancy. The number of the sides which indicated the roundness of the cross section was varied to be 4, 6, 8, 10, 12, 14, and infinity (cylindrical shape). The analysis was conducted using potential flow theory in a boundary element method solver through an open-source code NEMOH. Initially, panel convergence was conducted and compared with the experimental results of the reference model to obtain the appropriate simulation settings before being used for the case configuration analysis. Results stated that the roundness effect with sides greater than 16 had little effect on dynamic characteristics. Meanwhile, the spar with the largest diameter was more stable against the translational motion.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Experimental study on dynamic responses of a spar-type floating offshore wind turbine (vol 196, pg 560, 2022)
    Chen, Jiangbing
    Liu, Zenghui
    Song, Yupeng
    Peng, Yongbo
    Li, Jie
    RENEWABLE ENERGY, 2023, 215
  • [42] Concept Design and Coupled Dynamic Response Analysis on 6-MW Spar-Type Floating Offshore Wind Turbine
    Meng, Long
    Zhou, Tao
    He, Yan-ping
    Zhao, Yong-sheng
    Liu, Ya-dong
    CHINA OCEAN ENGINEERING, 2017, 31 (05) : 567 - 577
  • [43] Stochastic dynamic response analysis of a tension leg spar-type offshore wind turbine
    Karimirad, Madjid
    Moan, Torgeir
    WIND ENERGY, 2013, 16 (06) : 953 - 973
  • [44] Monitoring system for the wind-induced dynamic motion of 1/100-scale spar-type floating offshore wind turbine
    Kim, C. M.
    Cho, J. R.
    Kim, S. R.
    Lee, Y. S.
    WIND AND STRUCTURES, 2017, 24 (04) : 333 - 350
  • [45] DYNAMIC RESPONSES OF A SPAR TYPE FLOATING OFFSHORE WIND TURBINE WITH FAILED MOORINGS
    Ren, Yajun
    Venugopal, Vengatesan
    PROCEEDINGS OF THE ASME 39TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2020, VOL 9, 2020,
  • [46] Floating Spar-Type Offshore Wind Turbine Hydrodynamic Response Characterisation: a Computational Cost Aware Approach
    Coraddu, Andrea
    Oneto, Luca
    Kalikatzarakis, Miltos
    Ilardi, Davide
    Collu, Maurizio
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [47] Study on the Dynamic Characteristic for Spar type Floating Foundation of Offshore Wind Turbine
    Zhang, Ruoyu
    Chen, Chaohe
    Tang, Yougang
    PROGRESS IN CIVIL ENGINEERING, PTS 1-4, 2012, 170-173 : 2316 - +
  • [48] Computationally Aware Surrogate Models for the Hydrodynamic Response Characterization of Floating Spar-Type Offshore Wind Turbine
    Ilardi, Davide
    Kalikatzarakis, Miltiadis
    Oneto, Luca
    Collu, Maurizio
    Coraddu, Andrea
    IEEE ACCESS, 2024, 12 : 6494 - 6517
  • [49] FATIGUE DAMAGE TO THE SPAR-TYPE OFFSHORE FLOATING WIND TURBINE UNDER BLADE PITCH CONTROLLER FAULTS
    Etemaddar, Mahmoud
    Vahidian, Elaheh
    Skjastad, Otto
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 9A: OCEAN RENEWABLE ENERGY, 2014,
  • [50] Reliability-based design optimization of a spar-type floating offshore wind turbine support structure
    Leimeister, Mareike
    Kolios, Athanasios
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 213