Roundness and slenderness effects on the dynamic characteristics of spar-type floating offshore wind turbine

被引:0
|
作者
Adiputra, Ristiyanto [2 ]
Fauzi, Faiz Nur [1 ]
Firdaus, Nurman [2 ]
Suyanto, Eko Marta [2 ]
Kasharjanto, Afian [2 ]
Puryantini, Navik [2 ]
Erwandi, Erwandi [2 ]
Rasgianti, Rasgianti [3 ]
Prabowo, Aditya Rio [1 ]
机构
[1] Univ Sebelas Maret, Dept Mech Engn, Surakarta 57126, Indonesia
[2] Natl Res & Innovat Agcy BRIN, Res Ctr Hydrodynam Technol, Surabaya 60112, Indonesia
[3] PT PLN Persero Res Inst, Power Generat Syst Res Dept, Jakarta 12760, Indonesia
关键词
spar; floating offshore wind turbine; boundary element method; hydrodynamic characteristics; NEMOH; PLATFORM;
D O I
10.1515/cls-2022-0213
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Spar-type floating offshore wind turbine has been massively developed considering its design simplicity and stability to withstand the wave-induced motion. However, the variation of the local sea level and the readiness of supporting production facilities demand the spar design to adapt in a viable way. Considering this, the present article investigated how the slenderness (length over diameter ratio) and the roundness of cross section influence the hydrodynamic characteristics, which are the crucial parameters of floater performances. The OC3-Hywind spar-type floating platform was adapted as the reference model. The length of the reference floater was then varied with a ratio of 1.5, 2, 2.5, and 3 and the diameter was proportionally scaled to obtain constant buoyancy. The number of the sides which indicated the roundness of the cross section was varied to be 4, 6, 8, 10, 12, 14, and infinity (cylindrical shape). The analysis was conducted using potential flow theory in a boundary element method solver through an open-source code NEMOH. Initially, panel convergence was conducted and compared with the experimental results of the reference model to obtain the appropriate simulation settings before being used for the case configuration analysis. Results stated that the roundness effect with sides greater than 16 had little effect on dynamic characteristics. Meanwhile, the spar with the largest diameter was more stable against the translational motion.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Wake interaction between two spar-type floating offshore wind turbines under different layouts
    Huang, Yang
    Zhao, Weiwen
    Wan, Decheng
    PHYSICS OF FLUIDS, 2023, 35 (09)
  • [42] Modeling and PI Control of Spar Offshore Floating Wind Turbine
    Manikandan, R.
    Saha, Nilanjan
    IFAC PAPERSONLINE, 2016, 49 (01): : 783 - 788
  • [43] Dynamic Response of 6MW Spar Type Floating Offshore Wind Turbine by Experiment and Numerical Analyses
    Meng, Long
    He, Yan-ping
    Zhao, Yong-sheng
    Yang, Jie
    Yang, He
    Han, Zhao-long
    Yu, Long
    Mao, Wen-gang
    Du, Wei-kang
    CHINA OCEAN ENGINEERING, 2020, 34 (05) : 608 - 620
  • [44] Dynamic Response of 6MW Spar Type Floating Offshore Wind Turbine by Experiment and Numerical Analyses
    Long Meng
    Yan-ping He
    Yong-sheng Zhao
    Jie Yang
    He Yang
    Zhao-long Han
    Long Yu
    Wen-gang Mao
    Wei-kang Du
    China Ocean Engineering, 2020, 34 : 608 - 620
  • [45] Effects of turbulent wind and irregular waves on the dynamic characteristics of a floating offshore wind turbine platform
    Tian, Yinong
    Zhong, Yuguang
    Liu, Hengxu
    Kong, Fankai
    Chen, Hailong
    Ma, Zhijun
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2023, 37 (06) : 2921 - 2931
  • [46] Effects of turbulent wind and irregular waves on the dynamic characteristics of a floating offshore wind turbine platform
    Yinong Tian
    Yuguang Zhong
    Hengxu Liu
    Fankai Kong
    Hailong Chen
    Zhijun Ma
    Journal of Mechanical Science and Technology, 2023, 37 : 2921 - 2931
  • [47] On the influence of large amplitude nonlinear regular waves on the structural response of spar-type floating offshore wind turbines
    Nguyen, Hoa
    Chen, Lin
    Basu, Biswajit
    OCEAN ENGINEERING, 2023, 269
  • [48] Structural Modeling and Failure Assessment of Spar-Type Substructure for 5 MW Floating Offshore Wind Turbine under Extreme Conditions in the East Sea
    Ha, Kwangtae
    Kim, Jun-Bae
    Yu, Youngjae
    Seo, Hyoung-Seock
    ENERGIES, 2021, 14 (20)
  • [49] A fully-coupled analysis of the spar-type floating offshore wind turbine with bionic fractal heave plate under wind-wave excitation conditions
    Huang, Haoda
    Liu, Qingsong
    Iglesias, Gregorio
    Yue, Minnan
    Miao, Weipao
    Ye, Qi
    Li, Chun
    Yang, Tingting
    RENEWABLE ENERGY, 2024, 232
  • [50] Dynamic Modeling and Simulation of a Spar Floating Offshore Wind Turbine With Consideration of the Rotor Speed Variations
    Al-Solihat, Mohammed Khair
    Nahon, Meyer
    Behdinan, Kamran
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2019, 141 (08):