MBMethPred: a computational framework for the accurate classification of childhood medulloblastoma subgroups using data integration and AI-based approaches

被引:6
作者
Rahmani, Edris Sharif [1 ]
Lawarde, Ankita [1 ,2 ]
Lingasamy, Prakash [1 ]
Moreno, Sergio Vela [1 ,2 ]
Salumets, Andres [1 ,2 ,3 ,4 ]
Modhukur, Vijayachitra [1 ,2 ]
机构
[1] Competence Ctr Hlth Technol, Tartu, Estonia
[2] Univ Tartu, Inst Clin Med, Dept Obstet & Gynecol, Tartu, Estonia
[3] Karolinska Inst, Dept Clin Sci Intervent & Technol, Div Obstet & Gynecol, Stockholm, Sweden
[4] Karolinska Univ Hosp, Stockholm, Sweden
基金
欧盟地平线“2020”;
关键词
childhood medulloblastoma; subgroup classification; DNA methylation; machine learning; gene expression; deep learning; Wnt; sonic hedgehog; CENTRAL-NERVOUS-SYSTEM; MOLECULAR SUBGROUPS; TUMORS;
D O I
10.3389/fgene.2023.1233657
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Childhood medulloblastoma is a malignant form of brain tumor that is widely classified into four subgroups based on molecular and genetic characteristics. Accurate classification of these subgroups is crucial for appropriate treatment, monitoring plans, and targeted therapies. However, misclassification between groups 3 and 4 is common. To address this issue, an AI-based R package called MBMethPred was developed based on DNA methylation and gene expression profiles of 763 medulloblastoma samples to classify subgroups using machine learning and neural network models. The developed prediction models achieved a classification accuracy of over 96% for subgroup classification by using 399 CpGs as prediction biomarkers. We also assessed the prognostic relevance of prediction biomarkers using survival analysis. Furthermore, we identified subgroup-specific drivers of medulloblastoma using functional enrichment analysis, Shapley values, and gene network analysis. In particular, the genes involved in the nervous system development process have the potential to separate medulloblastoma subgroups with 99% accuracy. Notably, our analysis identified 16 genes that were specifically significant for subgroup classification, including EP300, CXCR4, WNT4, ZIC4, MEIS1, SLC8A1, NFASC, ASCL2, KIF5C, SYNGAP1, SEMA4F, ROR1, DPYSL4, ARTN, RTN4RL1, and TLX2. Our findings contribute to enhanced survival outcomes for patients with medulloblastoma. Continued research and validation efforts are needed to further refine and expand the utility of our approach in other cancer types, advancing personalized medicine in pediatric oncology.
引用
收藏
页数:16
相关论文
共 56 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]  
Adler D., 2003, P 35 S INT COMP SCI, P1
[3]   Methylation Profiling of Medulloblastoma in a Clinical Setting Permits Sub-classification and Reveals New Outcome Predictions [J].
Alharbi, Musa ;
Mobark, Nahla ;
Bashawri, Yara ;
Abu Safieh, Leen ;
Alowayn, Albandary ;
Aljelaify, Rasha ;
AlSaeed, Mariam ;
Almutairi, Amal ;
Alqubaishi, Fatimah ;
AlSolme, Ebtehal ;
Ahmad, Maqsood ;
Al-Banyan, Ayman ;
Alotabi, Fahad E. ;
Serrano, Jonathan ;
Snuderl, Matija ;
Al-Rashed, May ;
Abedalthagafi, Malak .
FRONTIERS IN NEUROLOGY, 2020, 11
[4]   Potential use of CXCL12/CXCR4 and sonic hedgehog pathways as therapeutic targets in medulloblastoma [J].
Amarante, Marla Karine ;
Freire Vitiello, Glauco Akelinghton ;
Rosa, Marcos Henrique ;
Mancilla, Igor Alves ;
Ehara Watanabe, Maria Angelica .
ACTA ONCOLOGICA, 2018, 57 (09) :1134-1142
[5]   Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays [J].
Aryee, Martin J. ;
Jaffe, Andrew E. ;
Corrada-Bravo, Hector ;
Ladd-Acosta, Christine ;
Feinberg, Andrew P. ;
Hansen, Kasper D. ;
Irizarry, Rafael A. .
BIOINFORMATICS, 2014, 30 (10) :1363-1369
[6]   AI-Based Pipeline for Classifying Pediatric Medulloblastoma Using Histopathological and Textural Images [J].
Attallah, Omneya ;
Zaghlool, Shaza .
LIFE-BASEL, 2022, 12 (02)
[7]   Decrease of SYNGAP1 in GABAergic cells impairs inhibitory synapse connectivity, synaptic inhibition and cognitive function [J].
Berryer, Martin H. ;
Chattopadhyaya, Bidisha ;
Xing, Paul ;
Riebe, Ilse ;
Bosoi, Ciprian ;
Sanon, Nathalie ;
Antoine-Bertrand, Judith ;
Levesque, Maxime ;
Avoli, Massimo ;
Hamdan, Fadi F. ;
Carmant, Lionel ;
Lamarche-Vane, Nathalie ;
Lacaille, Jean-Claude ;
Michaud, Jacques L. ;
Di Cristo, Graziella .
NATURE COMMUNICATIONS, 2016, 7
[8]   High density DNA methylation array with single CpG site resolution [J].
Bibikova, Marina ;
Barnes, Bret ;
Tsan, Chan ;
Ho, Vincent ;
Klotzle, Brandy ;
Le, Jennie M. ;
Delano, David ;
Zhang, Lu ;
Schroth, Gary P. ;
Gunderson, Kevin L. ;
Fan, Jian-Bing ;
Shen, Richard .
GENOMICS, 2011, 98 (04) :288-295
[9]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[10]   DNA methylation-based classification of central nervous system tumours [J].
Capper, David ;
Jones, David T. W. ;
Sill, Martin ;
Hovestadt, Volker ;
Schrimpf, Daniel ;
Sturm, Dominik ;
Koelsche, Christian ;
Sahm, Felix ;
Chavez, Lukas ;
Reuss, David E. ;
Kratz, Annekathrin ;
Wefers, Annika K. ;
Huang, Kristin ;
Pajtler, Kristian W. ;
Schweizer, Leonille ;
Stichel, Damian ;
Olar, Adriana ;
Engel, Nils W. ;
Lindenberg, Kerstin ;
Harter, Patrick N. ;
Braczynski, Anne K. ;
Plate, Karl H. ;
Dohmen, Hildegard ;
Garvalov, Boyan K. ;
Coras, Roland ;
Hoelsken, Annett ;
Hewer, Ekkehard ;
Bewerunge-Hudler, Melanie ;
Schick, Matthias ;
Fischer, Roger ;
Beschorner, Rudi ;
Schittenhelm, Jens ;
Staszewski, Ori ;
Wani, Khalida ;
Varlet, Pascale ;
Pages, Melanie ;
Temming, Petra ;
Lohmann, Dietmar ;
Selt, Florian ;
Witt, Hendrik ;
Milde, Till ;
Witt, Olaf ;
Aronica, Eleonora ;
Giangaspero, Felice ;
Rushing, Elisabeth ;
Scheurlen, Wolfram ;
Geisenberger, Christoph ;
Rodriguez, Fausto J. ;
Becker, Albert ;
Preusser, Matthias .
NATURE, 2018, 555 (7697) :469-+