Sub-Pixel Convolutional Neural Network for Image Super-Resolution Reconstruction

被引:7
|
作者
Shao, Guifang [1 ]
Sun, Qiao [2 ]
Gao, Yunlong [1 ]
Zhu, Qingyuan [1 ]
Gao, Fengqiang [1 ]
Zhang, Junfa [1 ]
机构
[1] Xiamen Univ, Pen Tung Sah Inst Micronano Sci & Technol, Xiamen 361005, Peoples R China
[2] Univ Calgary, Sch Engn, Calgary, AB T2N 1N4, Canada
关键词
image super-resolution; convolutional neural network; sub-pixel; residual network; FUSION;
D O I
10.3390/electronics12173572
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Image super-resolution (SR) reconstruction technology can improve the quality of low-resolution (LR) images. There are many available deep learning networks different from traditional machine learning algorithms. However, these networks are usually prone to poor performance on complex computation, vanishing gradients, and loss of useful information. In this work, we propose a sub-pixel convolutional neural network (SPCNN) for image SR reconstruction. First, to reduce the strong correlation, the RGB mode was translated into YCbCr mode, and the Y channel data was chosen as the input LR image. Meanwhile, the LR image was chosen as the network input to reduce computation instead of the interpolation reconstructed image as used in the super-resolution convolutional neural network (SRCNN). Then, two convolution layers were built to obtain more features, and four non-linear mapping layers were used to achieve different level features. Furthermore, the residual network was introduced to transfer the feature information from the lower layer to the higher layer to avoid the gradient explosion or vanishing gradient phenomenon. Finally, the sub-pixel convolution layer based on up-sampling was designed to reduce the reconstruction time. Experiments on three different data sets proved that the proposed SPCNN performs superiorly to the Bicubic, sparsity constraint super-resolution (SCSR), anchored neighborhood regression (ANR), and SRCNN methods on reconstruction precision and time consumption.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Super-Resolution Image Restoration Using Convolutional Neural Network
    Yu, Nedzelskyi O.
    Lashchevska, N. O.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2023, (91): : 79 - 86
  • [32] HYPERSPECTRAL IMAGE SUPER-RESOLUTION VIA CONVOLUTIONAL NEURAL NETWORK
    Mei, Shaohui
    Yuan, Xin
    Ji, Jingyu
    Wan, Shuai
    Hou, Junhui
    Du, Qian
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4297 - 4301
  • [33] Convolutional Neural Network with Gradient Information for Image Super-Resolution
    Tang, Yinggan
    Zhu, Xiaoning
    Cui, Mingyong
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 1714 - 1719
  • [34] Image super-resolution using a dilated convolutional neural network
    Lin, Guimin
    Wu, Qingxiang
    Qiu, Lida
    Huang, Xixian
    NEUROCOMPUTING, 2018, 275 : 1219 - 1230
  • [35] ITERATIVE CONVOLUTIONAL NEURAL NETWORK FOR NOISY IMAGE SUPER-RESOLUTION
    Bao, Wenbo
    Zhang, Xiaoyun
    Yan, Shangpeng
    Gao, Zhiyong
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4038 - 4042
  • [36] Image super-resolution with an enhanced group convolutional neural network
    Tian, Chunwei
    Yuan, Yixuan
    Zhang, Shichao
    Lin, Chia-Wen
    Zuo, Wangmeng
    Zhang, David
    NEURAL NETWORKS, 2022, 153 : 373 - 385
  • [37] Image Super-Resolution Using Residual Convolutional Neural Network
    Lee, Pei-Ying
    Tseng, Chien-Cheng
    2019 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TW), 2019,
  • [38] Single Image Super-Resolution Based on Convolutional Neural Network
    Shi Ziteng
    Wang Zhiren
    Wang Rui
    Ren Fuquan
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (12)
  • [39] Image reconstruction with a deep convolutional neural network in high-density super-resolution microscopy
    Yao, Bowen
    Li, Wen
    Pan, Wenhui
    Yang, Zhigang
    Chen, Danni
    Li, Jia
    Qu, Junle
    OPTICS EXPRESS, 2020, 28 (10): : 15432 - 15446
  • [40] Infrared image super-resolution reconstruction based on high frequency prior convolutional neural network
    Qi, YunPei
    Dong, Liquan
    Liu, Ming
    Kong, Lingqin
    Hui, Mei
    Zhao, Yuejin
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY IX, 2022, 12317