Bayesian time delay interferometry for orbiting LISA: Accounting for the time dependence of spacecraft separations

被引:5
|
作者
Page, Jessica [1 ]
Littenberg, Tyson B. [2 ]
机构
[1] Univ Alabama Huntsville, Space Sci Dept, 320 Sparkman Dr, Huntsville, AL 35899 USA
[2] NASA, Marshall Space Flight Ctr, Huntsville, AL 35812 USA
关键词
D O I
10.1103/PhysRevD.108.044065
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Previous work demonstrated effective laser frequency noise (LFN) suppression for Laser Interferometer (MCMC) algorithm with fractional delay interpolation (FDI) techniques to estimate the spacecraft separation parameters required for time-delay interferometry (TDI) under the assumption of a rigidly rotating LISA configuration. Including TDI parameters in the LISA data model as part of a global fit analysis pipeline enables gravitational wave inferences to be marginalized over uncertainty in the spacecraft separations. Here we extend the algorithm's capability to perform data-driven TDI on LISA in Keplerian orbits, which introduce a time-dependence in the arm-length parameters and at least OoM thorn times greater computational cost since the filter must be applied for every sample in the time series of sample size M. We find feasibility of arm-length estimation on & SIM;day-long timescales by using a novel Taylor-expanded version of the fractional delay interpolation filter that allows half of the filter computation to be calculated and stored before MCMC iterations and requires shorter filter lengths than previously reported. We demonstrate LFN suppression for orbiting LISA using accurate arm-length estimates parameterized by Keplerian orbital parameters under the assumption of unperturbed analytical Keplerian orbits, and explore the potential extension of these methods to arbitrary numerical orbits.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Time-delay interferometry without delays
    Vallisneri, Michele
    Bayle, Jean-Baptiste
    Babak, Stanislav
    Petiteau, Antoine
    PHYSICAL REVIEW D, 2021, 103 (08)
  • [42] Matrix representation of time-delay interferometry
    Tinto, Massimo
    Dhurandhar, Sanjeev
    Joshi, Prasanna
    PHYSICAL REVIEW D, 2021, 104 (04)
  • [43] Algebraic approach to time-delay data analysis for LISA
    Dhurandhar, SV
    Nayak, KR
    Vinet, JY
    PHYSICAL REVIEW D, 2002, 65 (10):
  • [44] Hardware-based demonstration of time-delay interferometry and TDI-ranging with spacecraft motion effects
    Mitryk, Shawn J.
    Mueller, Guido
    Sanjuan, Josep
    PHYSICAL REVIEW D, 2012, 86 (12):
  • [45] Time-orbiting potential trap for Bose-Einstein condensate interferometry
    Reeves, JM
    Garcia, O
    Deissler, B
    Baranowski, KL
    Hughes, KJ
    Sackett, CA
    PHYSICAL REVIEW A, 2005, 72 (05):
  • [46] LISA laser noise cancellation test using time-delayed interferometry
    Kuhnert, AC
    Spero, R
    Abramovici, A
    Schumaker, B
    Shaddock, D
    GRAVITATIONAL-WAVE DETECTION, 2003, 4856 : 74 - 77
  • [47] Time-delay interferometry with onboard optical delays
    Reinhardt, Jan Niklas
    Euringer, Philipp
    Hartwig, Olaf
    Hechenblaikner, Gerald
    Heinzel, Gerhard
    Yamamoto, Kohei
    PHYSICAL REVIEW D, 2024, 110 (08)
  • [48] Time delay interferometry combination with zero-response
    Wang, Pan -Pan
    Lu, Xiao-Yu
    Zhao, Xin-Lei
    Chen, Hao-Kang
    Zhou, Jing
    Huang, Weisheng
    Tan, Yu-Jie
    Wu, Han-Zhong
    Shao, Cheng-Gang
    RESULTS IN PHYSICS, 2024, 58
  • [49] Time-delay interferometry without clock synchronization
    Hartwig, Olaf
    Bayle, Jean-Baptiste
    Staab, Martin
    Hees, Aurelien
    Lilley, Marc
    Wolf, Peter
    PHYSICAL REVIEW D, 2022, 105 (12)
  • [50] Plasma noise in TianQin time-delay interferometry
    Jing, Yi-De
    Zheng, Lu
    Yang, Shutao
    Zhang, Xuefeng
    Lu, Lingfeng
    Tang, Binbin
    Su, Wei
    PHYSICAL REVIEW D, 2022, 106 (08)