Electrolytes with moderate lithium polysulfide solubility for high- performance long- calendar- life lithium-sulfur batteries

被引:57
作者
Gao, Xin [1 ]
Yu, Zhiao [2 ,3 ]
Wang, Jingyang [1 ]
Zheng, Xueli [1 ,4 ]
Ye, Yusheng [1 ]
Gong, Huaxin [2 ]
Xiao, Xin [1 ]
Yang, Yufei [1 ]
Chen, Yuelang [2 ,3 ]
Bone, Sharon E. [5 ]
Greenburg, Louisa C. [1 ]
Zhang, Pu [1 ]
Su, Hance [1 ]
Affeld, Jordan [1 ]
Bao, Zhenan [2 ]
Cui, Yi [1 ,4 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[4] SLAC Natl Accelerator Lab, Stanford Inst Mat & Energy Sci, Menlo Pk, CA 94025 USA
[5] SLAC Natl Accelerator Lab, Stanford Synchrotron Radiat Lightsource, Menlo Pk, CA 94025 USA
关键词
Li-S batteries; electrolyte engineering; moderate polysulfide solubility; long calendar life; SPARINGLY SOLVATING ELECTROLYTES; ENERGY DENSITY; SELF-DISCHARGE; CHALLENGES; EFFICIENCY; DESIGN; ETHER;
D O I
10.1073/pnas.2301260120
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lithium-sulfur (Li- S) batteries with high energy density and low cost are promising for next- generation energy storage. However, their cycling stability is plagued by the high solubility of lithium polysulfide (LiPS) intermediates, causing fast capacity decay and severe self- discharge. Exploring electrolytes with low LiPS solubility has shown promising results toward addressing these challenges. However, here, we report that electrolytes with moderate LiPS solubility are more effective for simultaneously limiting the shuttling effect and achieving good Li- S reaction kinetics. We explored a range of solubility from 37 to 1,100 mM (based on S atom, [S]) and found that a moderate solubility from 50 to 200 mM [S] performed the best. Using a series of electrolyte solvents with various degrees of fluorination, we formulated the Single- Solvent, Single- Salt, Standard Salt concentration with Moderate LiPSs solubility Electrolytes (termed S6MILE) for Li- S batteries. Among the designed electrolytes, Li- S cells using fluorinated- 1,2- diethoxyethane S6MILE (F4DEE-S6MILE) showed the highest capacity of 1,160 mAh g-1 at 0.05 C at room temperature. At 60 & DEG;C, fluorinated- 1,4- dimethoxybutane S6MILE (F4DMB-S6MILE) gave the highest capacity of 1,526 mAh g-1 at 0.05 C and an average CE of 99.89% for 150 cycles at 0.2 C under lean electrolyte conditions. This is a fivefold increase in cycle life compared with other conventional ether- based electrolytes. Moreover, we observed a long calendar aging life, with a capacity increase/recovery of 4.3% after resting for 30 d using F4DMB-S6MILE. Furthermore, the correlation between LiPS solubility, degree of fluorination of the electrolyte solvent, and battery performance was systematically investigated.
引用
收藏
页数:10
相关论文
共 68 条
[1]   Accurate Determination of Coulombic Efficiency for Lithium Metal Anodes and Lithium Metal Batteries [J].
Adams, Brian D. ;
Zheng, Jianming ;
Ren, Xiaodi ;
Xu, Wu ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2018, 8 (07)
[2]   THE CORRELATION BETWEEN SURFACE-CHEMISTRY, SURFACE-MORPHOLOGY, AND CYCLING EFFICIENCY OF LITHIUM ELECTRODES IN A FEW POLAR APROTIC SYSTEMS [J].
AURBACH, D ;
GOFER, Y ;
LANGZAM, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1989, 136 (11) :3198-3205
[3]   New High Donor Electrolyte for Lithium-Sulfur Batteries [J].
Baek, Minsung ;
Shin, Hyuksoo ;
Char, Kookheon ;
Choi, Jang Wook .
ADVANCED MATERIALS, 2020, 32 (52)
[4]  
Bai SY, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.94, 10.1038/nenergy.2016.94]
[5]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[6]   Solvent selection criteria for temperature-resilient lithium-sulfur batteries [J].
Cai, Guorui ;
Holoubek, John ;
Li, Mingqian ;
Gao, Hongpeng ;
Yin, Yijie ;
Yu, Sicen ;
Liu, Haodong ;
Pascal, Tod A. ;
Liu, Ping ;
Chen, Zheng .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2022, 119 (28)
[7]   Batteries and fuel cells for emerging electric vehicle markets [J].
Cano, Zachary P. ;
Banham, Dustin ;
Ye, Siyu ;
Hintennach, Andreas ;
Lu, Jun ;
Fowler, Michael ;
Chen, Zhongwei .
NATURE ENERGY, 2018, 3 (04) :279-289
[8]   Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization [J].
Cao, Xia ;
Ren, Xiaodi ;
Zou, Lianfeng ;
Engelhard, Mark H. ;
Huang, William ;
Wang, Hansen ;
Matthews, Bethany E. ;
Lee, Hongkyung ;
Niu, Chaojiang ;
Arey, Bruce W. ;
Cui, Yi ;
Wang, Chongmin ;
Xiao, Jie ;
Liu, Jun ;
Xu, Wu ;
Zhang, Ji-Guang .
NATURE ENERGY, 2019, 4 (09) :796-805
[9]   Restricting the Solubility of Polysulfides in Li-S Batteries Via Electrolyte Salt Selection [J].
Chen, Junzheng ;
Han, Kee Sung ;
Henderson, Wesley A. ;
Lau, Kah Chun ;
Vijayakumar, Murugesan ;
Dzwiniel, Trevor ;
Pan, Huilin ;
Curtiss, Larry A. ;
Xiao, Jie ;
Mueller, Karl T. ;
Shao, Yuyan ;
Liu, Jun .
ADVANCED ENERGY MATERIALS, 2016, 6 (11)
[10]   Improving Lithium-Sulfur Battery Performance under Lean Electrolyte through Nanoscale Confinement in Soft Swellable Gels [J].
Chen, Junzheng ;
Henderson, Wesley A. ;
Pan, Huilin ;
Perdue, Brian R. ;
Cao, Ruiguo ;
Hu, Jian Zhi ;
Wan, Chuan ;
Han, Kee Sung ;
Mueller, Karl T. ;
Zhang, Ji-Guang ;
Shao, Yuyan ;
Liu, Jun .
NANO LETTERS, 2017, 17 (05) :3061-3067