Impact of aminosilane and silanol precursor structure on atomic layer deposition process

被引:0
|
作者
Li, Wenling [1 ]
Cheng, Jiangong [1 ]
Zheng, Zilong [1 ]
Liu, Qiaohong [1 ]
Geng, Feng [2 ]
Yan, Hui [1 ]
机构
[1] Beijing Univ Technol, Fac Environm & Life, Fac Mat & Mfg,Beijing Key Lab Green Catalysis & Se, Dept Environm & Chem Engn, Beijing 100124, Peoples R China
[2] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Peoples R China
基金
中国国家自然科学基金;
关键词
Atomic layer deposition; Rapid atomic layer deposition; Activation barrier; Bond length; Rate-determining step; Aminosilane/Silanol precursors; SIO2; THIN-FILMS; VAPOR-DEPOSITION; 1ST-PRINCIPLES; GROWTH; ALD;
D O I
10.1016/j.apsusc.2023.156869
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomic layer deposition (ALD) and rapid atomic layer deposition (RALD) have emerged as useful techniques for depositing highly conformal and uniform thin films for advanced semiconductor devices. The performance of the ALD or RALD process depends on the design of precursor molecules. In this work, the aminosilane precursor molecules (bis(tertbutylamino)silane (BTBAS), bis(diethylamino)silane (BDEAS), and tris(dimethylamino)silane (TDMAS)) in ALD and two silanol precursors (tris(tert-butoxy)silanol (TBS) and tetra(tert-butoxy)silane [(tBuO)4Si]) in RALD were investigated using first-principles based on density functional theory. The energy diagrams of the growth process on the hydroxylated SiO2(0 0 1) surface were calculated for each precursor. Furthermore, the rate-determining step was confirmed, and the precursors were compared in terms of thermochemical energies and activation barriers. BTBAS showed the lowest energy barrier in the rate-determining step among all precursors, which suggested that the rapid rate of RALD might be due to the addition of trimethylaluminum catalyst. Moreover, during the decomposition process of ALD and RALD, the bond length at the transition state demonstrated a correlation with the reaction activation energies, which provided a new perspective for studying these processes. This work helps clarify the reaction processes, facilitating the design and preparation of more efficient precursors.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Bis(diethylamino) silane as the silicon precursor in the atomic layer deposition of HfSiOx
    Katamreddy, Rajesh
    Feist, Ben
    Takoudis, Christos
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (08) : G163 - G167
  • [42] Process study of gadolinium aluminate atomic layer deposition from the gadolinium tris-di-isopropylacetamidinate precursor
    Rodriguez, Leonard N. J.
    Franquet, A.
    Brijs, B.
    Tielens, H.
    Adelmann, C.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2012, 30 (01):
  • [43] Reactor scale simulation of an atomic layer deposition process
    Shaeri, Mohammad Reza
    Jen, Tien-Chien
    Yuan, Chris Yingchun
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2015, 94 : 584 - 593
  • [44] The first atomic layer deposition process for FexN films
    Du, Liyong
    Huang, Wei
    Zhang, Yuxiang
    Liu, Xinfang
    Ding, Yuqiang
    CHEMICAL COMMUNICATIONS, 2019, 55 (13) : 1943 - 1946
  • [45] An atomic layer deposition process for moving flexible substrates
    Maydannik, P. S.
    Kaariainen, T. O.
    Cameron, D. C.
    CHEMICAL ENGINEERING JOURNAL, 2011, 171 (01) : 345 - 349
  • [46] Development of a multiscale model for an atomic layer deposition process
    Adomaitis, Raymond A.
    JOURNAL OF CRYSTAL GROWTH, 2010, 312 (08) : 1449 - 1452
  • [47] Reductive Thermal Atomic Layer Deposition Process for Gold
    Vihervaara, Anton
    Hatanpaa, Timo
    Nieminen, Heta-Elisa
    Mizohata, Kenichiro
    Chundak, Mykhailo
    Ritala, Mikko
    ACS MATERIALS AU, 2023, 3 (03): : 206 - 214
  • [48] Rapid SiO2 Atomic Layer Deposition Using Tris(tert-pentoxy)silanol
    Burton, B. B.
    Boleslawski, M. P.
    Desombre, A. T.
    George, S. M.
    CHEMISTRY OF MATERIALS, 2008, 20 (22) : 7031 - 7043
  • [49] Design of efficient mono-aminosilane precursors for atomic layer deposition of SiO2 thin films
    Huang, Liang
    Han, Bo
    Fan, Maohong
    Cheng, Hansong
    RSC ADVANCES, 2017, 7 (37) : 22672 - 22678
  • [50] Impact of atomic layer deposition to nanophotonic structures and devices
    Saleem, Muhammad Rizwan
    Ali, Rizwan
    Khan, Mohammad Bilal
    Honkanen, Seppo
    Turunen, Jari
    FRONTIERS IN MATERIALS, 2014,