Impact of aminosilane and silanol precursor structure on atomic layer deposition process

被引:0
|
作者
Li, Wenling [1 ]
Cheng, Jiangong [1 ]
Zheng, Zilong [1 ]
Liu, Qiaohong [1 ]
Geng, Feng [2 ]
Yan, Hui [1 ]
机构
[1] Beijing Univ Technol, Fac Environm & Life, Fac Mat & Mfg,Beijing Key Lab Green Catalysis & Se, Dept Environm & Chem Engn, Beijing 100124, Peoples R China
[2] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Peoples R China
基金
中国国家自然科学基金;
关键词
Atomic layer deposition; Rapid atomic layer deposition; Activation barrier; Bond length; Rate-determining step; Aminosilane/Silanol precursors; SIO2; THIN-FILMS; VAPOR-DEPOSITION; 1ST-PRINCIPLES; GROWTH; ALD;
D O I
10.1016/j.apsusc.2023.156869
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomic layer deposition (ALD) and rapid atomic layer deposition (RALD) have emerged as useful techniques for depositing highly conformal and uniform thin films for advanced semiconductor devices. The performance of the ALD or RALD process depends on the design of precursor molecules. In this work, the aminosilane precursor molecules (bis(tertbutylamino)silane (BTBAS), bis(diethylamino)silane (BDEAS), and tris(dimethylamino)silane (TDMAS)) in ALD and two silanol precursors (tris(tert-butoxy)silanol (TBS) and tetra(tert-butoxy)silane [(tBuO)4Si]) in RALD were investigated using first-principles based on density functional theory. The energy diagrams of the growth process on the hydroxylated SiO2(0 0 1) surface were calculated for each precursor. Furthermore, the rate-determining step was confirmed, and the precursors were compared in terms of thermochemical energies and activation barriers. BTBAS showed the lowest energy barrier in the rate-determining step among all precursors, which suggested that the rapid rate of RALD might be due to the addition of trimethylaluminum catalyst. Moreover, during the decomposition process of ALD and RALD, the bond length at the transition state demonstrated a correlation with the reaction activation energies, which provided a new perspective for studying these processes. This work helps clarify the reaction processes, facilitating the design and preparation of more efficient precursors.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Precursor design and reaction mechanisms for the atomic layer deposition of metal films
    Ramos, Karla Bernal
    Saly, Mark J.
    Chabal, Yves J.
    COORDINATION CHEMISTRY REVIEWS, 2013, 257 (23-24) : 3271 - 3281
  • [32] Role of Precursor Choice on Area-Selective Atomic Layer Deposition
    Oh, Il-Kwon
    Sandoval, Tania E.
    Liu, Tzu-Ling
    Richey, Nathaniel E.
    Bent, Stacey F.
    CHEMISTRY OF MATERIALS, 2021, 33 (11) : 3926 - 3935
  • [33] Method to determine the sticking coefficient of precursor molecules in atomic layer deposition
    Rose, M.
    Bartha, J. W.
    APPLIED SURFACE SCIENCE, 2009, 255 (13-14) : 6620 - 6623
  • [34] Decomposition Characteristics of the TTIP (Tetraisopropyl Orthotitanate) Precursor for Atomic Layer Deposition
    Kim, Hayeong
    An, Jihyeok
    Maeng, SeonJeong
    Shin, Jae-Soo
    Choi, Eunmi
    Yun, Ju-Young
    MATERIALS, 2022, 15 (09)
  • [35] Atomic layer deposition of aluminum (111) thin film by dimethylethylaminealane precursor
    Okasha, Sameh
    Sekine, Yoshiaki
    Sasaki, Satoshi
    Harada, Yuichi
    THIN SOLID FILMS, 2021, 732
  • [36] Atomic layer deposition of vanadium oxides using vanadyl acetylacetonate as the precursor
    Juan, Pi-Chun
    Lin, Kuei-Chih
    Cho, Wen-Hao
    Chen, Chien-Lin
    Yang, Cheng-Ye
    Kei, Chi-Chung
    Li, Guo-Ren
    THIN SOLID FILMS, 2021, 725
  • [37] Novel precursor for the preparation of vanadium sulfide layers with atomic layer deposition
    Baji, Zsofia
    Fogarassy, Zsolt
    Sulyok, Attila
    Horvath, Zsolt Endre
    Szabo, Zoltan
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2025, 43 (02):
  • [38] Evaluation of a praseodymium precursor for atomic layer deposition of oxide dielectric films
    Kukli, K
    Ritala, M
    Pilvi, T
    Sajavaara, T
    Leskelä, M
    Jones, AC
    Aspinall, HC
    Gilmer, DC
    Tobin, PJ
    CHEMISTRY OF MATERIALS, 2004, 16 (24) : 5162 - 5168
  • [39] Atomic Layer Deposition of Iridium Using a Tricarbonyl Cyclopropenyl Precursor and Oxygen
    Park, Na-Yeon
    Kim, Minsu
    Kim, Youn-Hye
    Ramesh, Rahul
    Nandi, Dip K.
    Tsugawa, Tomohiro
    Shigetomi, Toshiyuki
    Suzuki, Kazuharu
    Harada, Ryosuke
    Kim, Miso
    An, Ki-Seok
    Shong, Bonggeun
    Kim, Soo-Hyun
    CHEMISTRY OF MATERIALS, 2022, 34 (04) : 1533 - 1543
  • [40] Tris(dimethylamido) aluminum(III): An overlooked atomic layer deposition precursor
    Buttera, Sydney C.
    Mandia, David J.
    Barry, Sean T.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2017, 35 (01):