Impact of aminosilane and silanol precursor structure on atomic layer deposition process

被引:0
|
作者
Li, Wenling [1 ]
Cheng, Jiangong [1 ]
Zheng, Zilong [1 ]
Liu, Qiaohong [1 ]
Geng, Feng [2 ]
Yan, Hui [1 ]
机构
[1] Beijing Univ Technol, Fac Environm & Life, Fac Mat & Mfg,Beijing Key Lab Green Catalysis & Se, Dept Environm & Chem Engn, Beijing 100124, Peoples R China
[2] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Peoples R China
基金
中国国家自然科学基金;
关键词
Atomic layer deposition; Rapid atomic layer deposition; Activation barrier; Bond length; Rate-determining step; Aminosilane/Silanol precursors; SIO2; THIN-FILMS; VAPOR-DEPOSITION; 1ST-PRINCIPLES; GROWTH; ALD;
D O I
10.1016/j.apsusc.2023.156869
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomic layer deposition (ALD) and rapid atomic layer deposition (RALD) have emerged as useful techniques for depositing highly conformal and uniform thin films for advanced semiconductor devices. The performance of the ALD or RALD process depends on the design of precursor molecules. In this work, the aminosilane precursor molecules (bis(tertbutylamino)silane (BTBAS), bis(diethylamino)silane (BDEAS), and tris(dimethylamino)silane (TDMAS)) in ALD and two silanol precursors (tris(tert-butoxy)silanol (TBS) and tetra(tert-butoxy)silane [(tBuO)4Si]) in RALD were investigated using first-principles based on density functional theory. The energy diagrams of the growth process on the hydroxylated SiO2(0 0 1) surface were calculated for each precursor. Furthermore, the rate-determining step was confirmed, and the precursors were compared in terms of thermochemical energies and activation barriers. BTBAS showed the lowest energy barrier in the rate-determining step among all precursors, which suggested that the rapid rate of RALD might be due to the addition of trimethylaluminum catalyst. Moreover, during the decomposition process of ALD and RALD, the bond length at the transition state demonstrated a correlation with the reaction activation energies, which provided a new perspective for studying these processes. This work helps clarify the reaction processes, facilitating the design and preparation of more efficient precursors.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Atomic layer deposition process with TiF4 as a precursor for depositing metal fluoride thin films
    Pilvi, Tero
    Ritala, Mikko
    Leskelae, Markku
    Bischoff, Martin
    Kaiser, Ute
    Kaiser, Norbert
    APPLIED OPTICS, 2008, 47 (13) : C271 - C274
  • [22] Reactions of ruthenium cyclopentadienyl precursor in the metal precursor pulse of Ru atomic layer deposition
    Liu, Ji
    Lu, Hongliang
    Zhang, David Wei
    Nolan, Michael
    JOURNAL OF MATERIALS CHEMISTRY C, 2021, 9 (08) : 2919 - 2932
  • [23] Impact of precursor dosing on the surface passivation of AZO/AlOx stacks formed using atomic layer deposition
    Wang, Yan
    Hobson, Theodore D. C.
    Swallow, Jack E. N.
    Mcnab, Shona
    O'Sullivan, John
    Soeriyadi, Anastasia H.
    Niu, Xinya
    Fraser, Rebekah C.
    Dasgupta, Akash
    Maitra, Soumyajit
    Altermatt, Pietro P.
    Weatherup, Robert S.
    Wright, Matthew
    Bonilla, Ruy S.
    ENERGY ADVANCES, 2025,
  • [24] Impact of the Plasma Ambient and the Ruthenium Precursor on the Growth of Ruthenium Films by Plasma Enhanced Atomic Layer Deposition
    Swerts, J.
    Delabie, A.
    Salimullah, M. M.
    Popovici, M.
    Kim, M. -S.
    Schaekers, M.
    Van Elshocht, S.
    ECS SOLID STATE LETTERS, 2012, 1 (02) : P19 - P21
  • [25] Conformality of atomic layer deposition in microchannels: impact of process parameters on the simulated thickness profile
    Yim, Jihong
    Verkama, Emma
    Velasco, Jorge A.
    Arts, Karsten
    Puurunen, Riikka L.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (15) : 8645 - 8660
  • [26] Correlating Growth Characteristics in Atomic Layer Deposition with Precursor Molecular Structure: The Case of Zinc Tin Oxide
    Tanskanen, Jukka T.
    Hagglund, Carl
    Bent, Stacey F.
    CHEMISTRY OF MATERIALS, 2014, 26 (09) : 2795 - 2802
  • [27] Atomic Layer Deposition of Ruthenium Thin Films from an Amidinate Precursor
    Wang, Hongtao
    Gordon, Roy G.
    Alvis, Roger
    Ulfig, Robert M.
    CHEMICAL VAPOR DEPOSITION, 2009, 15 (10-12) : 312 - 319
  • [28] Modeling precursor diffusion and reaction of atomic layer deposition in porous structures
    Keuter, Thomas
    Menzler, Norbert Heribert
    Mauer, Georg
    Vondahlen, Frank
    Vassen, Robert
    Buchkremer, Hans Peter
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2015, 33 (01):
  • [29] A liquid alkoxide precursor for the atomic layer deposition of aluminum oxide films
    Cao, LiAo
    Mattelaer, Felix
    Sajavaara, Timo
    Dendooven, Jolien
    Detavernier, Christophe
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2020, 38 (02):
  • [30] Role of a cyclopentadienyl ligand in a heteroleptic alkoxide precursor in atomic layer deposition
    Yoon, Hwi
    Lee, Yujin
    Lee, Ga Yeon
    Seo, Seunggi
    Park, Bo Keun
    Chung, Taek-Mo
    Oh, Il-Kwon
    Kim, Hyungjun
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (02):