Impact of aminosilane and silanol precursor structure on atomic layer deposition process

被引:0
作者
Li, Wenling [1 ]
Cheng, Jiangong [1 ]
Zheng, Zilong [1 ]
Liu, Qiaohong [1 ]
Geng, Feng [2 ]
Yan, Hui [1 ]
机构
[1] Beijing Univ Technol, Fac Environm & Life, Fac Mat & Mfg,Beijing Key Lab Green Catalysis & Se, Dept Environm & Chem Engn, Beijing 100124, Peoples R China
[2] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Peoples R China
基金
中国国家自然科学基金;
关键词
Atomic layer deposition; Rapid atomic layer deposition; Activation barrier; Bond length; Rate-determining step; Aminosilane/Silanol precursors; SIO2; THIN-FILMS; VAPOR-DEPOSITION; 1ST-PRINCIPLES; GROWTH; ALD;
D O I
10.1016/j.apsusc.2023.156869
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomic layer deposition (ALD) and rapid atomic layer deposition (RALD) have emerged as useful techniques for depositing highly conformal and uniform thin films for advanced semiconductor devices. The performance of the ALD or RALD process depends on the design of precursor molecules. In this work, the aminosilane precursor molecules (bis(tertbutylamino)silane (BTBAS), bis(diethylamino)silane (BDEAS), and tris(dimethylamino)silane (TDMAS)) in ALD and two silanol precursors (tris(tert-butoxy)silanol (TBS) and tetra(tert-butoxy)silane [(tBuO)4Si]) in RALD were investigated using first-principles based on density functional theory. The energy diagrams of the growth process on the hydroxylated SiO2(0 0 1) surface were calculated for each precursor. Furthermore, the rate-determining step was confirmed, and the precursors were compared in terms of thermochemical energies and activation barriers. BTBAS showed the lowest energy barrier in the rate-determining step among all precursors, which suggested that the rapid rate of RALD might be due to the addition of trimethylaluminum catalyst. Moreover, during the decomposition process of ALD and RALD, the bond length at the transition state demonstrated a correlation with the reaction activation energies, which provided a new perspective for studying these processes. This work helps clarify the reaction processes, facilitating the design and preparation of more efficient precursors.
引用
收藏
页数:6
相关论文
共 33 条
  • [1] Atomic layer chemical vapor deposition of SiO2 thin films using a chlorine-free silicon precursor for 3D NAND applications
    Baek, GeonHo
    Baek, Ji-hoon
    Kim, Hye-mi
    Lee, Seunghwan
    Jin, Yusung
    Park, Hyung Soon
    Kil, Deok-Sin
    Kim, Sangho
    Park, Yongjoo
    Park, Jin-Seong
    [J]. CERAMICS INTERNATIONAL, 2021, 47 (13) : 19036 - 19042
  • [2] Adsorption and surface reaction of bis-diethylaminosilane as a Si precursor on an OH-terminated Si (001) surface
    Baek, Seung-Bin
    Kim, Dae-Hee
    Kim, Yeong-Cheol
    [J]. APPLIED SURFACE SCIENCE, 2012, 258 (17) : 6341 - 6344
  • [3] Atomic Layer Deposition of Silicon Nitride from Bis(tertiary-butyl-amino)silane and N2 Plasma Studied by in Situ Gas Phase and Surface Infrared Spectroscopy
    Bosch, Roger H. E. C.
    Cornelissen, Lidewij E.
    Knoops, Harm C. M.
    Kessels, Wilhelmus M. M.
    [J]. CHEMISTRY OF MATERIALS, 2016, 28 (16) : 5864 - 5871
  • [4] Rapid vapor deposition SiO2 thin film deposited at a low temperature using tris(tert-pentoxy)silanol and trimethyl-aluminum
    Choi, Dong-won
    Chung, Kwun-Bum
    Park, Jin-Seong
    [J]. MATERIALS CHEMISTRY AND PHYSICS, 2013, 142 (2-3) : 614 - 618
  • [5] Studies on optical, chemical, and electrical properties of rapid SiO2 atomic layer deposition using tris(tert-butoxy)silanol and trimethyl-aluminum
    Choi, Dongwon
    Kim, Boo-Kyung
    Chung, Kwun-Bum
    Park, Jin-Seong
    [J]. MATERIALS RESEARCH BULLETIN, 2012, 47 (10) : 3004 - 3007
  • [6] Conformality in atomic layer deposition: Current status overview of analysis and modelling
    Cremers, Veronique
    Puurunen, Riikka L.
    Dendooven, Jolien
    [J]. APPLIED PHYSICS REVIEWS, 2019, 6 (02)
  • [7] Modeling Mechanism and Growth Reactions for New Nanofabrication Processes by Atomic Layer Deposition
    Elliott, Simon D.
    Dey, Gangotri
    Maimaiti, Yasheng
    Ablat, Hayrensa
    Filatova, Ekaterina A.
    Fomengia, Glen N.
    [J]. ADVANCED MATERIALS, 2016, 28 (27) : 5367 - 5380
  • [8] Self-catalysis by aminosilanes and strong surface oxidation by O2 plasma in plasma-enhanced atomic layer deposition of high-quality SiO2
    Fang, Guo-Yong
    Xu, Li-Na
    Cao, Yan-Qiang
    Wang, Lai-Guo
    Wu, Di
    Li, Ai-Dong
    [J]. CHEMICAL COMMUNICATIONS, 2015, 51 (07) : 1341 - 1344
  • [9] Theoretical Understanding of the Reaction Mechanism of SiO2 Atomic Layer Deposition
    Fang, Guoyong
    Xu, Lina
    Ma, Jing
    Li, Aidong
    [J]. CHEMISTRY OF MATERIALS, 2016, 28 (05) : 1247 - 1255
  • [10] Rapid atomic layer deposition of silica nanolaminates: synergistic catalysis of Lewis/Bronsted acid sites and interfacial interactions
    Fang, Guoyong
    Ma, Jing
    [J]. NANOSCALE, 2013, 5 (23) : 11856 - 11869