Impact of aminosilane and silanol precursor structure on atomic layer deposition process

被引:0
|
作者
Li, Wenling [1 ]
Cheng, Jiangong [1 ]
Zheng, Zilong [1 ]
Liu, Qiaohong [1 ]
Geng, Feng [2 ]
Yan, Hui [1 ]
机构
[1] Beijing Univ Technol, Fac Environm & Life, Fac Mat & Mfg,Beijing Key Lab Green Catalysis & Se, Dept Environm & Chem Engn, Beijing 100124, Peoples R China
[2] China Acad Engn Phys, Res Ctr Laser Fus, Mianyang 621900, Peoples R China
基金
中国国家自然科学基金;
关键词
Atomic layer deposition; Rapid atomic layer deposition; Activation barrier; Bond length; Rate-determining step; Aminosilane/Silanol precursors; SIO2; THIN-FILMS; VAPOR-DEPOSITION; 1ST-PRINCIPLES; GROWTH; ALD;
D O I
10.1016/j.apsusc.2023.156869
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atomic layer deposition (ALD) and rapid atomic layer deposition (RALD) have emerged as useful techniques for depositing highly conformal and uniform thin films for advanced semiconductor devices. The performance of the ALD or RALD process depends on the design of precursor molecules. In this work, the aminosilane precursor molecules (bis(tertbutylamino)silane (BTBAS), bis(diethylamino)silane (BDEAS), and tris(dimethylamino)silane (TDMAS)) in ALD and two silanol precursors (tris(tert-butoxy)silanol (TBS) and tetra(tert-butoxy)silane [(tBuO)4Si]) in RALD were investigated using first-principles based on density functional theory. The energy diagrams of the growth process on the hydroxylated SiO2(0 0 1) surface were calculated for each precursor. Furthermore, the rate-determining step was confirmed, and the precursors were compared in terms of thermochemical energies and activation barriers. BTBAS showed the lowest energy barrier in the rate-determining step among all precursors, which suggested that the rapid rate of RALD might be due to the addition of trimethylaluminum catalyst. Moreover, during the decomposition process of ALD and RALD, the bond length at the transition state demonstrated a correlation with the reaction activation energies, which provided a new perspective for studying these processes. This work helps clarify the reaction processes, facilitating the design and preparation of more efficient precursors.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Impact of Aminosilane Precursor Structure on Silicon Oxides by Atomic Layer Deposition
    O'Neill, Mark L.
    Bowen, Heather R.
    Derecskei-Kovacs, Agnes
    Cuthill, Kirk S.
    Han, Bing
    Xiao, Manchao
    ELECTROCHEMICAL SOCIETY INTERFACE, 2011, 20 (04): : 33 - 37
  • [2] Impact of precursor exposure on process efficiency and film properties in spatial atomic layer deposition
    Viet Huong Nguyen
    Sekkat, Abderrahime
    Jimenez, Carmen
    Munoz, Delfina
    Bellet, Daniel
    Munoz-Rojas, David
    CHEMICAL ENGINEERING JOURNAL, 2021, 403
  • [3] Impact of precursor chemistry on atomic layer deposition of lutetium aluminates
    Nyns, Laura
    Shi, Xiaoping
    Tielens, Hilde
    Van Elshocht, Sven
    Date, Lucien
    Schreutelkamp, Robert
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2012, 30 (01):
  • [4] Energy-enhanced atomic layer deposition for more process and precursor versatility
    Potts, S. E.
    Kessels, W. M. M.
    COORDINATION CHEMISTRY REVIEWS, 2013, 257 (23-24) : 3254 - 3270
  • [5] MODELING OF PRECURSOR FLOW AND DEPOSITION IN ATOMIC LAYER DEPOSITION REACTOR
    SIIMON, H
    AARIK, J
    JOURNAL DE PHYSIQUE IV, 1995, 5 (C5): : 245 - 252
  • [6] Atomic layer deposition of carbon doped silicon oxide by precursor design and process tuning
    Wang, Meiliang
    Chandra, Haripin
    Lei, Xinjian
    Mallikarjunan, Anupama
    Cuthill, Kirk
    Xiao, Manchao
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2018, 36 (02):
  • [7] Titanium isopropoxide as a precursor for atomic layer deposition:: characterization of titanium dioxide growth process
    Aarik, J
    Aidla, A
    Uustare, T
    Ritala, M
    Leskelä, M
    APPLIED SURFACE SCIENCE, 2000, 161 (3-4) : 385 - 395
  • [8] Atomic Layer Deposition of Hafnium Oxide Passivating Layers on Silicon: Impact of Precursor Selection
    Pain, Sophie L.
    Yadav, Anup
    Walker, David
    Grant, Nicholas E.
    Murphy, John D.
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2025, 19 (01):
  • [9] Atomic layer deposition NanoEncapsulation process
    不详
    AMERICAN CERAMIC SOCIETY BULLETIN, 2006, 85 (10): : 16 - 17
  • [10] Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition
    Deng, Zhang
    He, Wenjie
    Duan, Chenlong
    Chen, Rong
    Shan, Bin
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2016, 34 (01):