Strategies for consistent and automated quantification of HDL proteome using data-independent acquisition

被引:2
作者
Souza Junior, Douglas Ricardo [1 ]
Silva, Amanda Ribeiro Martins [1 ]
Ronsein, Graziella Eliza [1 ]
机构
[1] Univ Sao Paulo, Inst Chem, Dept Biochem, Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
apolipoproteins; data-independent acquisition; high-density lipoprotein; HDL; lipoproteins; proteomics; quantitative proteomics; MASS-SPECTROMETRY; ABSOLUTE QUANTIFICATION; HUMAN PLASMA; PROTEINS; APOLIPOPROTEINS; RANGE;
D O I
10.1016/j.jlr.2023.100397
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The introduction of mass spectrometrybased proteomics has revolutionized the high-density lipoprotein (HDL) field, with the description, characterization, and implication of HDL-associated proteins in an array of pathologies. However, acquiring robust, reproducible data is still a challenge in the quantitative assessment of HDL proteome. Data-independent acquisition (DIA) is a mass spectrometry methodology that allows the acquisition of reproducible data, but data analysis remains a challenge in the field. To date, there is no consensus on how to process DIA-derived data for HDL proteomics. Here, we developed a pipeline aiming to standardize HDL proteome quantification. We optimized instrument parameters and compared the performance of four freely available, MaxDIA, and Skyline) in processing DIA data. Importantly, pooled samples were used as quality controls throughout our experimental setup. A careful evaluation of precision, linearity, and detection limits, first using E. coli background for HDL proteomics and second using HDL proteome and synthetic peptides, was undertaken. Finally, as a proof of concept, we employed our optimized and automated pipeline to quantify the proteome of HDL and apolipoprotein B-containing lipoproteins. Our results show that determination of precision is key to confidently and consistently quantifying HDL proteins. Taking this precaution, any of the available software tested here would be appropriate for quantification of HDL proteome, although their performance varied considerably.
引用
收藏
页数:14
相关论文
共 52 条
  • [1] Improving Precursor Selectivity in Data-Independent Acquisition Using Overlapping Windows
    Amodei, Dario
    Egertson, Jarrett
    MacLean, Brendan X.
    Johnson, Richard
    Merrihew, Gennifer E.
    Keller, Austin
    Marsh, Don
    Vitek, Olga
    Mallick, Parag
    MacCoss, Michael J.
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2019, 30 (04) : 669 - 684
  • [2] Plasma Clusterin and Lipid Profile: A Link with Aging and Cardiovascular Diseases in a Population with a Consistent Number of Centenarians
    Baralla, Angela
    Sotgiu, Elisabetta
    Deiana, Marta
    Pasella, Sara
    Pinna, Sara
    Mannu, Andrea
    Canu, Elisabetta
    Sotgiu, Giovanni
    Ganau, Antonello
    Zinellu, Angelo
    Sotgia, Salvatore
    Carru, Ciriaco
    Deiana, Luca
    [J]. PLOS ONE, 2015, 10 (06):
  • [3] Niacin in Patients with Low HDL Cholesterol Levels Receiving Intensive Statin Therapy
    Boden, William E.
    Probstfield, Jeffrey L.
    Anderson, Todd
    Chaitman, Bernard R.
    Desvignes-Nickens, Patrice
    Koprowicz, Kent
    McBride, Ruth
    Teo, Koon
    Weintraub, William
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (24) : 2255 - 2267
  • [4] Apolipoprotein Proteomics for Residual Lipid-Related Risk in Coronary Heart Disease
    Clarke, Robert
    Von Ende, Adam
    Schmidt, Lukas E.
    Yin, Xiaoke
    Hill, Michael
    Hughes, Alun D.
    Pechlaner, Raimund
    Willeit, Johann
    Kiechl, Stefan
    Watkins, Hugh
    Theofilatos, Konstantinos
    Hopewell, Jemma C.
    Mayr, Manuel
    [J]. CIRCULATION RESEARCH, 2023, 132 (04) : 452 - 464
  • [5] Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ
    Cox, Juergen
    Hein, Marco Y.
    Luber, Christian A.
    Paron, Igor
    Nagaraj, Nagarjuna
    Mann, Matthias
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2014, 13 (09) : 2513 - 2526
  • [6] MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
    Cox, Juergen
    Mann, Matthias
    [J]. NATURE BIOTECHNOLOGY, 2008, 26 (12) : 1367 - 1372
  • [7] The HDL Proteome Watch: Compilation of studies leads to new insights on HDL function
    Davidson, W. Sean
    Shah, Amy S.
    Sexmith, Hannah
    Gordon, Scott M.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 2022, 1867 (02):
  • [8] DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput
    Demichev, Vadim
    Messner, Christoph B.
    Vernardis, Spyros I.
    Lilley, Kathryn S.
    Ralser, Markus
    [J]. NATURE METHODS, 2020, 17 (01) : 41 - +
  • [9] Impact of the Identification Strategy on the Reproducibility of the DDA and DIA Results
    Fernandez-Costa, Carolina
    Martinez-Bartolome, Salvador
    McClatchy, Daniel B.
    Saviola, Anthony J.
    Yu, Nam-Kyung
    Yates, John R., III
    [J]. JOURNAL OF PROTEOME RESEARCH, 2020, 19 (08) : 3153 - 3161
  • [10] Benchmarking of analysis strategies for data-independent acquisition proteomics using a large-scale dataset comprising inter-patient heterogeneity
    Froehlich, Klemens
    Brombacher, Eva
    Fahrner, Matthias
    Vogele, Daniel
    Kook, Lucas
    Pinter, Niko
    Bronsert, Peter
    Timme-Bronsert, Sylvia
    Schmidt, Alexander
    Baerenfaller, Katja
    Kreutz, Clemens
    Schilling, Oliver
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)