Multiple soliton solutions and symmetry analysis of a nonlocal coupled KP system

被引:1
作者
Liu, Xi-zhong [1 ]
Li, Jie-tong [1 ]
Yu, Jun [1 ]
机构
[1] Shaoxing Univ, Inst Nonlinear Sci, Shaoxing 312000, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlocal coupled Kadomtsev-Petviashivili system; N-soliton solutions; symmetry reduction solutions; EQUATION;
D O I
10.1088/1572-9494/ace156
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A nonlocal coupled Kadomtsev-Petviashivili (ncKP) system with shifted parity ((P) over cap (x)(s) ) and delayed time reversal (T-d(<^>)) symmetries is generated from the local coupled Kadomtsev-Petviashivili (cKP) system. By introducing new dependent variables which have determined parities under the action of (P) over cap (x)(s) (T) over cap (d)(d) the ncKP is transformed to a local system. Through this way, multiple even number of soliton solutions of the ncKPI system are generated from N-soliton solutions of the cKP system, which become breathers by choosing appropriate parameters. The standard Lie symmetry method is also applied on the ncKPII system to get its symmetry reduction solutions.
引用
收藏
页数:9
相关论文
共 30 条
[1]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[2]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[3]  
Bluman George W, 2013, Symmetries and Differential Equations, V81
[4]   Solutions of the nonlocal nonlinear Schrodinger hierarchy via reduction [J].
Chen, Kui ;
Zhang, Da-jun .
APPLIED MATHEMATICS LETTERS, 2018, 75 :82-88
[5]   General soliton solution to a nonlocal nonlinear Schrodinger equation with zero and nonzero boundary conditions [J].
Feng, Bao-Feng ;
Luo, Xu-Dan ;
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2018, 31 (12) :5385-5409
[6]   Complete integrability of nonlocal nonlinear Schrodinger equation [J].
Gerdjikov, V. S. ;
Saxena, A. .
JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (01)
[7]  
HIETARINTA J, 1990, NATO ADV SCI I C-MAT, V310, P459
[8]   HIERARCHIES OF COUPLED SOLITON-EQUATIONS .1. [J].
HIROTA, R ;
OHTA, Y .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1991, 60 (03) :798-809
[9]   Soliton solutions for the nonlocal nonlinear Schrodinger equation [J].
Huang, Xin ;
Ling, Liming .
EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (05)
[10]   Spider-web solutions of the coupled KP equation [J].
Isojima, S ;
Willox, R ;
Satsuma, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (36) :9533-9552